BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15546700)

  • 1. Differences of cerebral activation between superior and inferior learners during motor sequence encoding and retrieval.
    Heun R; Freymann N; Granath DO; Stracke CP; Jessen F; Barkow K; Reul J
    Psychiatry Res; 2004 Nov; 132(1):19-32. PubMed ID: 15546700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study.
    Gauthier CT; Duyme M; Zanca M; Capron C
    Cortex; 2009 Feb; 45(2):164-76. PubMed ID: 19150518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Prefrontal and superior temporal lobe hyperactivity as a biological substrate of generalized anxiety disorders].
    Zhao XH; Wang PJ; Li CB; Wang JH; Yang ZY; Hu ZH; Wu WY
    Zhonghua Yi Xue Za Zhi; 2006 Apr; 86(14):955-60. PubMed ID: 16759533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Males and females differ in brain activation during cognitive tasks.
    Bell EC; Willson MC; Wilman AH; Dave S; Silverstone PH
    Neuroimage; 2006 Apr; 30(2):529-38. PubMed ID: 16260156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependent differences in human brain activity using a face- and location-matching task: an FMRI study.
    Leinsinger G; Born C; Meindl T; Bokde AL; Britsch S; Lopez-Bayo P; Teipel SJ; Moller HJ; Hampel H; Reiser MF
    Dement Geriatr Cogn Disord; 2007; 24(4):235-46. PubMed ID: 17700019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI.
    de Vries PM; de Jong BM; Bohning DE; Walker JA; George MS; Leenders KL
    Brain Res; 2009 Aug; 1285():58-68. PubMed ID: 19523932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct comparison of episodic encoding and retrieval of words: an event-related fMRI study.
    McDermott KB; Ojemann JG; Petersen SE; Ollinger JM; Snyder AZ; Akbudak E; Conturo TE; Raichle ME
    Memory; 1999; 7(5-6):661-78. PubMed ID: 10659091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S
    Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural substrates of response-based sequence learning using fMRI.
    Bischoff-Grethe A; Goedert KM; Willingham DT; Grafton ST
    J Cogn Neurosci; 2004; 16(1):127-38. PubMed ID: 15006042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of precuneus and left inferior frontal cortex during source memory episodic retrieval.
    Lundstrom BN; Ingvar M; Petersson KM
    Neuroimage; 2005 Oct; 27(4):824-34. PubMed ID: 15982902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural correlates of verbal short-term memory in Alzheimer's disease: an fMRI study.
    Peters F; Collette F; Degueldre C; Sterpenich V; Majerus S; Salmon E
    Brain; 2009 Jul; 132(Pt 7):1833-46. PubMed ID: 19433442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning by strategies and learning by drill--evidence from an fMRI study.
    Delazer M; Ischebeck A; Domahs F; Zamarian L; Koppelstaetter F; Siedentopf CM; Kaufmann L; Benke T; Felber S
    Neuroimage; 2005 Apr; 25(3):838-49. PubMed ID: 15808984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: an fMRI study.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Cortex; 2008 May; 44(5):482-93. PubMed ID: 18387582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute tryptophan depletion reduces activation in the right hippocampus during encoding in an episodic memory task.
    van der Veen FM; Evers EA; van Deursen JA; Deutz NE; Backes WH; Schmitt JA
    Neuroimage; 2006 Jul; 31(3):1188-96. PubMed ID: 16513369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Left inferior parietal dominance in gesture imitation: an fMRI study.
    Mühlau M; Hermsdörfer J; Goldenberg G; Wohlschläger AM; Castrop F; Stahl R; Röttinger M; Erhard P; Haslinger B; Ceballos-Baumann AO; Conrad B; Boecker H
    Neuropsychologia; 2005; 43(7):1086-98. PubMed ID: 15769494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional MRI study of cortical activations associated with object manipulation in patients with MS.
    Filippi M; Rocca MA; Mezzapesa DM; Falini A; Colombo B; Scotti G; Comi G
    Neuroimage; 2004 Mar; 21(3):1147-54. PubMed ID: 15006681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.