These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15546744)

  • 1. Random coil phosphorus chemical shift of deoxyribonucleic acids.
    Ho CN; Lam SL
    J Magn Reson; 2004 Dec; 171(2):193-200. PubMed ID: 15546744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random coil carbon chemical shifts of deoxyribonucleic acids.
    Kwok CW; Ho CN; Chi LM; Lam SL
    J Magn Reson; 2004 Jan; 166(1):11-8. PubMed ID: 14675814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random coil proton chemical shifts of deoxyribonucleic acids.
    Lam SL; Ip LN; Cui X; Ho CN
    J Biomol NMR; 2002 Dec; 24(4):329-37. PubMed ID: 12522297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DSHIFT: a web server for predicting DNA chemical shifts.
    Lam SL
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W713-7. PubMed ID: 17517771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in drug 13C NMR chemical shifts as a tool for monitoring interactions with DNA.
    Boudreau EA; Pelczer I; Borer PN; Heffron GJ; LaPlante SR
    Biophys Chem; 2004 Jun; 109(3):333-44. PubMed ID: 15110931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 31P chemical shift tensors for canonical and non-canonical conformations of nucleic acids: a DFT study and NMR implications.
    Precechtelová J; Padrta P; Munzarová ML; Sklenár V
    J Phys Chem B; 2008 Mar; 112(11):3470-8. PubMed ID: 18298109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR studies on self-complementary oligonucleotides conjugated with methylene blue.
    Jähnchen J; Purwanto MG; Weisz K
    Biopolymers; 2005 Dec; 79(6):335-43. PubMed ID: 16130129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of atomic structure from sequence for double helical DNA oligomers.
    Farwer J; Packer MJ; Hunter CA
    Biopolymers; 2006 Jan; 81(1):51-61. PubMed ID: 16184626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleic acid folding determined by mesoscale modeling and NMR spectroscopy: solution structure of d(GCGAAAGC).
    Santini GP; Cognet JA; Xu D; Singarapu KK; Hervé du Penhoat C
    J Phys Chem B; 2009 May; 113(19):6881-93. PubMed ID: 19374420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between 31P chemical shift tensors and conformation of nucleic acid backbone: a DFT study.
    Precechtelová J; Munzarová ML; Novák P; Sklenár V
    J Phys Chem B; 2007 Mar; 111(10):2658-67. PubMed ID: 17315915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.
    Carlisle EA; Holder JL; Maranda AM; de Alwis AR; Selkie EL; McKay SL
    Biopolymers; 2007 Jan; 85(1):72-80. PubMed ID: 17054116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR study of the folding-unfolding mechanism for the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG).
    Mao XA; Gmeiner WH
    Biophys Chem; 2005 Feb; 113(2):155-60. PubMed ID: 15617822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins.
    De Simone A; Cavalli A; Hsu ST; Vranken W; Vendruscolo M
    J Am Chem Soc; 2009 Nov; 131(45):16332-3. PubMed ID: 19852475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides.
    Michel T; Debart F; Heitz F; Vasseur JJ
    Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principal component analysis of DNA oligonucleotide structural data.
    Bharanidharan D; Gautham N
    Biochem Biophys Res Commun; 2006 Feb; 340(4):1229-37. PubMed ID: 16414352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis.
    Modig K; Jürgensen VW; Lindorff-Larsen K; Fieber W; Bohr HG; Poulsen FM
    FEBS Lett; 2007 Oct; 581(25):4965-71. PubMed ID: 17910956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotion of stable triplex formation by partial incorporation of 2',5'-phosphodiester linkages into triplex-forming oligonucleotides.
    Obika S; Hiroto A; Nakagawa O; Imanishi T
    Chem Commun (Camb); 2005 Jun; (22):2793-5. PubMed ID: 15928760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy.
    Bryce DL; Grishaev A; Bax A
    J Am Chem Soc; 2005 May; 127(20):7387-96. PubMed ID: 15898787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of structure-switching in G-quadruplexes using end-stacking ability.
    Seo YJ; Lee IJ; Kim BH
    Bioorg Med Chem Lett; 2008 Jul; 18(14):3910-3. PubMed ID: 18585032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of 31P nuclear magnetic resonance chemical shifts for phosphines.
    Tong J; Liu S; Zhang S; Li SZ
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):837-46. PubMed ID: 17258501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.