These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

697 related articles for article (PubMed ID: 15546868)

  • 1. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation.
    Deng X; Ewton DZ; Mercer SE; Friedman E
    J Biol Chem; 2005 Feb; 280(6):4894-905. PubMed ID: 15546868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mirk/dyrk1B is a Rho-induced kinase active in skeletal muscle differentiation.
    Deng X; Ewton DZ; Pawlikowski B; Maimone M; Friedman E
    J Biol Chem; 2003 Oct; 278(42):41347-54. PubMed ID: 12902328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cyclin-dependent kinase inhibitor p27Kip1 is stabilized in G(0) by Mirk/dyrk1B kinase.
    Deng X; Mercer SE; Shah S; Ewton DZ; Friedman E
    J Biol Chem; 2004 May; 279(21):22498-504. PubMed ID: 15010468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation.
    Zhang CL; McKinsey TA; Olson EN
    Mol Cell Biol; 2002 Oct; 22(20):7302-12. PubMed ID: 12242305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis.
    Zhang CL; McKinsey TA; Olson EN
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7354-9. PubMed ID: 11390982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mirk/Dyrk1B mediates survival during the differentiation of C2C12 myoblasts.
    Mercer SE; Ewton DZ; Deng X; Lim S; Mazur TR; Friedman E
    J Biol Chem; 2005 Jul; 280(27):25788-801. PubMed ID: 15851482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional activation of the myogenin gene by MEF2-mediated recruitment of myf5 is inhibited by adenovirus E1A protein.
    Johanson M; Meents H; Ragge K; Buchberger A; Arnold HH; Sandmöller A
    Biochem Biophys Res Commun; 1999 Nov; 265(1):222-32. PubMed ID: 10548518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation.
    Dressel U; Bailey PJ; Wang SC; Downes M; Evans RM; Muscat GE
    J Biol Chem; 2001 May; 276(20):17007-13. PubMed ID: 11279209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases.
    Lu J; McKinsey TA; Zhang CL; Olson EN
    Mol Cell; 2000 Aug; 6(2):233-44. PubMed ID: 10983972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation.
    McKinsey TA; Zhang CL; Lu J; Olson EN
    Nature; 2000 Nov; 408(6808):106-11. PubMed ID: 11081517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor.
    Zhang CL; McKinsey TA; Lu JR; Olson EN
    J Biol Chem; 2001 Jan; 276(1):35-9. PubMed ID: 11022042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation.
    Lazaro JB; Bailey PJ; Lassar AB
    Genes Dev; 2002 Jul; 16(14):1792-805. PubMed ID: 12130539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated raf kinase inhibits muscle cell differentiation through a MEF2-dependent mechanism.
    Winter B; Arnold HH
    J Cell Sci; 2000 Dec; 113 Pt 23():4211-20. PubMed ID: 11069766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation.
    Novitch BG; Spicer DB; Kim PS; Cheung WL; Lassar AB
    Curr Biol; 1999 May; 9(9):449-59. PubMed ID: 10322110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. c-Ski activates MyoD in the nucleus of myoblastic cells through suppression of histone deacetylases.
    Kobayashi N; Goto K; Horiguchi K; Nagata M; Kawata M; Miyazawa K; Saitoh M; Miyazono K
    Genes Cells; 2007 Mar; 12(3):375-85. PubMed ID: 17352741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression.
    Langley B; Thomas M; Bishop A; Sharma M; Gilmour S; Kambadur R
    J Biol Chem; 2002 Dec; 277(51):49831-40. PubMed ID: 12244043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells.
    Ridgeway AG; Wilton S; Skerjanc IS
    J Biol Chem; 2000 Jan; 275(1):41-6. PubMed ID: 10617583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation.
    Chen SL; Dowhan DH; Hosking BM; Muscat GE
    Genes Dev; 2000 May; 14(10):1209-28. PubMed ID: 10817756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CaM kinase IIdeltaC phosphorylation of 14-3-3beta in vascular smooth muscle cells: activation of class II HDAC repression.
    Ellis JJ; Valencia TG; Zeng H; Roberts LD; Deaton RA; Grant SR
    Mol Cell Biochem; 2003 Jan; 242(1-2):153-61. PubMed ID: 12619878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual promoter structure of ZFP106: regulation by myogenin and nuclear respiratory factor-1.
    Grasberger H; Ye H; Mashima H; Bell GI
    Gene; 2005 Jan; 344():143-59. PubMed ID: 15656981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.