BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 15546896)

  • 41. Assessment of aircrew radiation exposure by further measurements and model development.
    Lewis BJ; Desormeaux M; Green AR; Bennett LG; Butler A; McCall M; Vergara JC
    Radiat Prot Dosimetry; 2004; 111(2):151-71. PubMed ID: 15266068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Corrigendum to "Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit".
    El-Jaby S
    Life Sci Space Res (Amst); 2016 Jun; 9():93-96. PubMed ID: 27345206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.
    Yasuda H; Yajima K; Sato T; Takada M; Nakamura T
    Health Phys; 2009 Jun; 96(6):655-60. PubMed ID: 19430218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study of the ratio of non-neutron to neutron dose components of cosmic radiation at typical commercial flight altitudes.
    Romero AM; Saez-Vergara JC; Rodriguez R; Domínguez-Mompell R
    Radiat Prot Dosimetry; 2004; 110(1-4):357-62. PubMed ID: 15353674
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Galactic and solar radiation exposure to aircrew during a solar cycle.
    Lewis BJ; Bennett LG; Green AR; McCall MJ; Ellaschuk B; Butler A; Pierre M
    Radiat Prot Dosimetry; 2002; 102(3):207-27. PubMed ID: 12430961
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Validation of modelling the radiation exposure due to solar particle events at aircraft altitudes.
    Beck P; Bartlett DT; Bilski P; Dyer C; Flückiger E; Fuller N; Lantos P; Reitz G; Rühm W; Spurny F; Taylor G; Trompier F; Wissmann F
    Radiat Prot Dosimetry; 2008; 131(1):51-8. PubMed ID: 18838437
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A NEW SEMI-EMPIRICAL AMBIENT TO EFFECTIVE DOSE CONVERSION MODEL FOR THE PREDICTIVE CODE FOR AIRCREW RADIATION EXPOSURE (PCAIRE).
    Dumouchel T; McCall M; Lemay F; Bennett L; Lewis B; Bean M
    Radiat Prot Dosimetry; 2016 Dec; 172(4):333-340. PubMed ID: 26622045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Italian national survey of aircrew exposure: II. On-board measurements and results.
    Curzio G; Grillmaier RE; O'Sullivan D; Pelliccioni M; Piermattei S; Tommasino L
    Radiat Prot Dosimetry; 2001; 93(2):125-33. PubMed ID: 11548335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dosimetry for occupational exposure to cosmic radiation.
    Bartlett DT; McAulay IR; Schrewe UJ; Schnuer K; Menzel HG; Bottollier-Depois JF; Dietze G; Gmur K; Grillmaeir RE; Heinrich W; Lim T; Lindborg L; Reitz G; Schraube H; Spurny F; Tommasino L
    Radiat Prot Dosimetry; 1997; 70(1-4):395-404. PubMed ID: 11540534
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cosmic radiation dose in aircraft--a neutron track etch detector.
    Vuković B; Radolić V; Miklavcić I; Poje M; Varga M; Planinić J
    J Environ Radioact; 2007; 98(3):264-73. PubMed ID: 17600597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of clouds on the cosmic radiation dose rate on aircraft.
    Pazianotto MT; Federico CA; Cortés-Giraldo MA; Pinto ML; Gonçalez OL; Quesada JM; Carlson BV; Palomo FR
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):279-83. PubMed ID: 24925902
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A mathematical model of aircraft for evaluating the effects of shielding structure on aircrew exposure.
    Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):331-5. PubMed ID: 16604655
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterisation of the TRIUMF neutron facility using a Monte Carlo simulation code.
    Monk SD; Abram T; Joyce MJ
    Radiat Prot Dosimetry; 2015 Apr; 164(3):228-38. PubMed ID: 25342608
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Forbush decrease effects on radiation dose received on-board aeroplanes.
    Lantos P
    Radiat Prot Dosimetry; 2005; 117(4):357-64. PubMed ID: 16030059
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation on contribution of neutron monitor data to estimation of aviation doses.
    Kákona M; Ploc O; Kyselová D; Kubančák J; Langer R; Kudela K
    Life Sci Space Res (Amst); 2016 Nov; 11():24-28. PubMed ID: 27993190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions.
    Alves JG; Mairos JC
    Radiat Prot Dosimetry; 2007; 125(1-4):433-7. PubMed ID: 17277329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Field calibration of dosemeters used for routine measurements at flight altitudes.
    Wissmann F; Burmeister S; Dönsdorf E; Heber B; Hubiak M; Klages T; Langner F; Möller T; Meier M
    Radiat Prot Dosimetry; 2010 Aug; 140(4):319-25. PubMed ID: 20484163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Overview of research on aircraft crew dosimetry during the last solar cycle.
    Beck P
    Radiat Prot Dosimetry; 2009 Oct; 136(4):244-50. PubMed ID: 19706723
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles.
    Sato T; Kataoka R; Yasuda H; Yashiro S; Kuwabara T; Shiota D; Kubo Y
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):274-8. PubMed ID: 24344351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new dynamical atmospheric ionizing radiation (AIR) model for epidemiological studies.
    De Angelis G; Clem JM; Goldhagen PE; Wilson JW
    Adv Space Res; 2003; 32(1):17-26. PubMed ID: 14727658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.