BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 15547112)

  • 1. Nucleoside transport at the blood-testis barrier studied with primary-cultured sertoli cells.
    Kato R; Maeda T; Akaike T; Tamai I
    J Pharmacol Exp Ther; 2005 Feb; 312(2):601-8. PubMed ID: 15547112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of novel Na+-dependent nucleobase transport systems at the blood-testis barrier.
    Kato R; Maeda T; Akaike T; Tamai I
    Am J Physiol Endocrinol Metab; 2006 May; 290(5):E968-75. PubMed ID: 16368787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleoside transporter expression and function in cultured mouse astrocytes.
    Peng L; Huang R; Yu AC; Fung KY; Rathbone MP; Hertz L
    Glia; 2005 Oct; 52(1):25-35. PubMed ID: 15892125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of nucleoside uptake by the basolateral side of the sheep choroid plexus epithelium perfused in situ.
    Markovic I; Segal M; Djuricic B; Redzic Z
    Exp Physiol; 2008 Mar; 93(3):325-33. PubMed ID: 18039975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basolateral uptake of nucleosides by Sertoli cells is mediated primarily by equilibrative nucleoside transporter 1.
    Klein DM; Evans KK; Hardwick RN; Dantzler WH; Wright SH; Cherrington NJ
    J Pharmacol Exp Ther; 2013 Jul; 346(1):121-9. PubMed ID: 23639800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of an unidentified sodium-dependent nucleoside transport system to the uptake and cytotoxicity of anthracycline in mouse M5076 ovarian sarcoma cells.
    Nagai K; Nagasawa K; Koma M; Kihara Y; Fujimoto S
    Biochem Pharmacol; 2006 Feb; 71(5):565-73. PubMed ID: 16376308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of various drugs to inhibit nucleoside uptake in rat syncytiotrophoblast cell line, TR-TBT 18d-1.
    Chishu T; Sai Y; Nishimura T; Sato K; Kose N; Nakashima E
    Placenta; 2008 May; 29(5):461-7. PubMed ID: 18329095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na(+)-dependent, active nucleoside transport in S49 mouse lymphoma cells and loss in AE-1 mutant deficient in facilitated nucleoside transport.
    Plagemann PG
    J Cell Biochem; 1991 May; 46(1):54-9. PubMed ID: 1874800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of nucleoside transport systems in cultured rat epididymal epithelium.
    Leung GP; Ward JL; Wong PY; Tse CM
    Am J Physiol Cell Physiol; 2001 May; 280(5):C1076-82. PubMed ID: 11287319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleoside Reverse Transcriptase Inhibitor Interaction with Human Equilibrative Nucleoside Transporters 1 and 2.
    Miller SR; Hau RK; Jilek JL; Morales MN; Wright SH; Cherrington NJ
    Drug Metab Dispos; 2020 Jul; 48(7):603-612. PubMed ID: 32393653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleoside transporter subtype expression and function in rat skeletal muscle microvascular endothelial cells.
    Archer RG; Pitelka V; Hammond JR
    Br J Pharmacol; 2004 Sep; 143(1):202-14. PubMed ID: 15289294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of equilibrative and concentrative Na+-dependent (cif) nucleoside transport in acute promyelocytic leukemia NB4 cells.
    Roovers KI; Meckling-Gill KA
    J Cell Physiol; 1996 Mar; 166(3):593-600. PubMed ID: 8600163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pirarubicin is taken up by a uridine-transportable sodium-dependent concentrative nucleoside transporter in Ehrlich ascites carcinoma cells.
    Nagai K; Nagasawa K; Ishimoto A; Fujimoto S
    Cancer Chemother Pharmacol; 2003 Jun; 51(6):512-8. PubMed ID: 12679883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity of nucleoside transport in mammalian cells. Two types of transport activity in L1210 and other cultured neoplastic cells.
    Belt JA
    Mol Pharmacol; 1983 Nov; 24(3):479-84. PubMed ID: 6314117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Drug Interactions with Human Equilibrative Nucleoside Transporters 1 and 2 Using Functional Knockout Cell Lines and Bayesian Modeling.
    Miller SR; Zhang X; Hau RK; Jilek JL; Jennings EQ; Galligan JJ; Foil DH; Zorn KM; Ekins S; Wright SH; Cherrington NJ
    Mol Pharmacol; 2021 Feb; 99(2):147-162. PubMed ID: 33262250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of organic cations across the blood-testis barrier.
    Maeda T; Goto A; Kobayashi D; Tamai I
    Mol Pharm; 2007; 4(4):600-7. PubMed ID: 17616214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of the anthracycline pirarubicin into mouse M5076 ovarian sarcoma cells via a sodium-dependent nucleoside transport system.
    Nagai K; Nagasawa K; Fujimoto S
    Cancer Chemother Pharmacol; 2005 Mar; 55(3):222-30. PubMed ID: 15526202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional expression of equilibrative and concentrative nucleoside transporters in alveolar epithelial cells.
    Baba S; Yumoto R; Kawami M; Takano M
    Pharmazie; 2021 Sep; 76(9):416-421. PubMed ID: 34481531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OCTN2-mediated transport of carnitine in isolated Sertoli cells.
    Kobayashi D; Goto A; Maeda T; Nezu J; Tsuji A; Tamai I
    Reproduction; 2005 Jun; 129(6):729-36. PubMed ID: 15923388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-independent nucleoside transporters regulate adenosine and hypoxanthine levels in Müller cells and the inner blood-retinal barrier.
    Akanuma S; Soutome T; Hisada E; Tachikawa M; Kubo Y; Hosoya K
    Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1469-77. PubMed ID: 23361509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.