BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1554733)

  • 1. Delineation of structural domains in eukaryotic 5S rRNA with a rhodium probe.
    Chow CS; Hartmann KM; Rawlings SL; Huber PW; Barton JK
    Biochemistry; 1992 Apr; 31(13):3534-42. PubMed ID: 1554733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of tertiary structure in tRNAs by Rh(phen)2phi3+, a new reagent for RNA structure-function mapping.
    Chow CS; Behlen LS; Uhlenbeck OC; Barton JK
    Biochemistry; 1992 Feb; 31(4):972-82. PubMed ID: 1734973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the Tat-binding site of bovine immunodeficiency virus TAR RNA with a shape-selective rhodium complex.
    Lim AC; Barton JK
    Bioorg Med Chem; 1997 Jun; 5(6):1131-6. PubMed ID: 9222507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations of crystal structures of DNA oligonucleotides with enantioselective recognition by Rh(phen)2phi3+: probes of DNA propeller twisting in solution.
    Campisi D; Morii T; Barton JK
    Biochemistry; 1994 Apr; 33(14):4130-9. PubMed ID: 8155630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Major groove opening at the HIV-1 Tat binding site of TAR RNA evidenced by a rhodium probe.
    Neenhold HR; Rana TM
    Biochemistry; 1995 May; 34(19):6303-9. PubMed ID: 7756257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the binding of Xenopus ribosomal protein L5 to oocyte 5 S rRNA. The major determinants of recognition are located in helix III-loop C.
    Scripture JB; Huber PW
    J Biol Chem; 1995 Nov; 270(45):27358-65. PubMed ID: 7592999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of G-U mismatches by tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III).
    Chow CS; Barton JK
    Biochemistry; 1992 Jun; 31(24):5423-9. PubMed ID: 1377020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rh(phen)2phi3+ as a shape-selective probe of triple helices.
    Lim AC; Barton JK
    Biochemistry; 1998 Jun; 37(25):9138-46. PubMed ID: 9636060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal 5S RNA from Xenopus laevis oocytes: conformation and interaction with transcription factor IIIA.
    Romby P; Baudin F; Brunel C; Leal de Stevenson I; Westhof E; Romaniuk PJ; Ehresmann C; Ehresmann B
    Biochimie; 1990; 72(6-7):437-52. PubMed ID: 2124147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-selective DNA recognition and photocleavage: a comparison of enantiomers of Rh(en)2phi3+.
    Shields TP; Barton JK
    Biochemistry; 1995 Nov; 34(46):15037-48. PubMed ID: 7578116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical probing of tDNAPhe with transition metal complexes: a structural comparison of RNA and DNA.
    Lim AC; Barton JK
    Biochemistry; 1993 Oct; 32(41):11029-34. PubMed ID: 8218168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of "hinge" nucleotides of Xenopus laevis 5 S rRNA in the RNA structural organization and in the binding of transcription factor TFIIIA.
    Baudin F; Romaniuk PJ; Romby P; Brunel C; Westhof E; Ehresmann B; Ehresmann C
    J Mol Biol; 1991 Mar; 218(1):69-81. PubMed ID: 2002508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the binding of Xenopus transcription factor IIIA to oocyte 5 S rRNA and to the 5 S rRNA gene.
    Rawlings SL; Matt GD; Huber PW
    J Biol Chem; 1996 Jan; 271(2):868-77. PubMed ID: 8557698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential DNA recognition by the enantiomers of 1-Rh(MGP)2 phi: a combination of shape selection and direct readout.
    Franklin SJ; Barton JK
    Biochemistry; 1998 Nov; 37(46):16093-105. PubMed ID: 9819202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA hydrolysis and oxidative cleavage by metal-binding peptides tethered to rhodium intercalators.
    Copeland KD; Fitzsimons MP; Houser RP; Barton JK
    Biochemistry; 2002 Jan; 41(1):343-56. PubMed ID: 11772034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling.
    Brunel C; Romby P; Westhof E; Ehresmann C; Ehresmann B
    J Mol Biol; 1991 Sep; 221(1):293-308. PubMed ID: 1717695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural requirements of 5S rRNA for nuclear transport, 7S ribonucleoprotein particle assembly, and 60S ribosomal subunit assembly in Xenopus oocytes.
    Allison LA; North MT; Murdoch KJ; Romaniuk PJ; Deschamps S; le Maire M
    Mol Cell Biol; 1993 Nov; 13(11):6819-31. PubMed ID: 8413275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbing the DNA sequence selectivity of metallointercalator-peptide conjugates by single amino acid modification.
    Hastings CA; Barton JK
    Biochemistry; 1999 Aug; 38(31):10042-51. PubMed ID: 10433711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the solution structures and conformational properties of the somatic and oocyte 5S rRNAs of Xenopus laevis.
    Romaniuk PJ; de Stevenson IL; Ehresmann C; Romby P; Ehresmann B
    Nucleic Acids Res; 1988 Mar; 16(5):2295-312. PubMed ID: 3357778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual induced fit binding of Xenopus ribosomal protein L5 to 5S rRNA.
    DiNitto JP; Huber PW
    J Mol Biol; 2003 Jul; 330(5):979-92. PubMed ID: 12860121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.