These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 15547913)

  • 1. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries.
    Kim E; Son D; Kim TG; Cho J; Park B; Ryu KS; Chang SH
    Angew Chem Int Ed Engl; 2004 Nov; 43(44):5987-90. PubMed ID: 15547913
    [No Abstract]   [Full Text] [Related]  

  • 2. Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries.
    Qu B; Zhang M; Lei D; Zeng Y; Chen Y; Chen L; Li Q; Wang Y; Wang T
    Nanoscale; 2011 Sep; 3(9):3646-51. PubMed ID: 21792405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries.
    Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH
    Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous SnO2 synthesized with non-ionic surfactants as an anode material for lithium batteries.
    Subramanian V; Jiang JC; Smith PH; Rambabu B
    J Nanosci Nanotechnol; 2004; 4(1-2):125-31. PubMed ID: 15112554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ZnSn(OH)6 nanocube-graphene composite as an anode material for Li-ion batteries.
    Chen C; Zheng X; Yang J; Wei M
    Phys Chem Chem Phys; 2014 Oct; 16(37):20073-8. PubMed ID: 25130363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance.
    Wang G; Liu H; Liu J; Qiao S; Lu GM; Munroe P; Ahn H
    Adv Mater; 2010 Nov; 22(44):4944-8. PubMed ID: 20842660
    [No Abstract]   [Full Text] [Related]  

  • 7. On the electronic conductivity of phospho-olivines as lithium storage electrodes.
    Ravet N; Abouimrane A; Armand M
    Nat Mater; 2003 Nov; 2(11):702; author reply 702-3. PubMed ID: 14593388
    [No Abstract]   [Full Text] [Related]  

  • 8. Materials for rechargeable lithium-ion batteries.
    Hayner CM; Zhao X; Kung HH
    Annu Rev Chem Biomol Eng; 2012; 3():445-71. PubMed ID: 22524506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronically conductive phospho-olivines as lithium storage electrodes.
    Chung SY; Bloking JT; Chiang YM
    Nat Mater; 2002 Oct; 1(2):123-8. PubMed ID: 12618828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordered mesoporous α-Fe2O3 (hematite) thin-film electrodes for application in high rate rechargeable lithium batteries.
    Brezesinski K; Haetge J; Wang J; Mascotto S; Reitz C; Rein A; Tolbert SH; Perlich J; Dunn B; Brezesinski T
    Small; 2011 Feb; 7(3):407-14. PubMed ID: 21294271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode.
    Chen J; Yano K
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7682-7. PubMed ID: 23947639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of mesoporous CuO nanosheets-CNT 3D-network composites for lithium-ion batteries.
    Huang H; Liu Y; Wang J; Gao M; Peng X; Ye Z
    Nanoscale; 2013 Mar; 5(5):1785-8. PubMed ID: 23361121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes.
    Lee YJ; Yi H; Kim WJ; Kang K; Yun DS; Strano MS; Ceder G; Belcher AM
    Science; 2009 May; 324(5930):1051-5. PubMed ID: 19342549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hollow melon-seed-shaped lithium iron phosphate micro- and sub-micrometer plates for lithium-ion batteries.
    Yang XF; Yang JH; Zhong YL; Gariepy V; Trudeau ML; Zaghib K; Ying JY
    ChemSusChem; 2014 Jun; 7(6):1618-22. PubMed ID: 24700813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.
    Jeun JH; Park KY; Kim DH; Kim WS; Kim HC; Lee BS; Kim H; Yu WR; Kang K; Hong SH
    Nanoscale; 2013 Sep; 5(18):8480-3. PubMed ID: 23897097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium-ion batteries: An unexpected conductor.
    Thackeray M
    Nat Mater; 2002 Oct; 1(2):81-2. PubMed ID: 12618814
    [No Abstract]   [Full Text] [Related]  

  • 17. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries.
    Shaju KM; Jiao F; Débart A; Bruce PG
    Phys Chem Chem Phys; 2007 Apr; 9(15):1837-42. PubMed ID: 17415496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis for yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries.
    Choi SH; Kang YC
    Small; 2014 Feb; 10(3):474-8. PubMed ID: 23996921
    [No Abstract]   [Full Text] [Related]  

  • 19. Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities.
    Wu P; Du N; Zhang H; Liu J; Chang L; Wang L; Yang D; Jiang JZ
    Nanoscale; 2012 Jul; 4(13):4002-6. PubMed ID: 22677937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-enabled silicon anode for lithium-ion batteries.
    Chen X; Gerasopoulos K; Guo J; Brown A; Wang C; Ghodssi R; Culver JN
    ACS Nano; 2010 Sep; 4(9):5366-72. PubMed ID: 20707328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.