These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Optimization of rifamycin B fermentation in shake flasks via a machine-learning-based approach. Bapat PM; Wangikar PP Biotechnol Bioeng; 2004 Apr; 86(2):201-8. PubMed ID: 15052640 [TBL] [Abstract][Full Text] [Related]
5. Improvement of rifemycins production by Amycolatopsis mediterranei in batch and fed-batch cultures. El-Enshasy HA; Beshay UI; El-Diwany AI; Omar HM; El-Kholy AG; El-Najar R Acta Microbiol Pol; 2003; 52(3):301-13. PubMed ID: 14743983 [TBL] [Abstract][Full Text] [Related]
6. Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Zhang H; Williams-Dalson W; Keshavarz-Moore E; Shamlou PA Biotechnol Appl Biochem; 2005 Feb; 41(Pt 1):1-8. PubMed ID: 15310285 [TBL] [Abstract][Full Text] [Related]
7. Expression of the bacterial hemoglobin gene from Vitreoscilla stercoraria increases rifamycin B production in Amycolatopsis mediterranei. Priscila G; Fernández FJ; Absalón AE; Suarez Mdel R; Sainoz M; Barrios-González J; Mejía A J Biosci Bioeng; 2008 Nov; 106(5):493-7. PubMed ID: 19111646 [TBL] [Abstract][Full Text] [Related]
8. Structured kinetic model to represent the utilization of multiple substrates in complex media during rifamycin B fermentation. Bapat PM; Bhartiya S; Venkatesh KV; Wangikar PP Biotechnol Bioeng; 2006 Mar; 93(4):779-90. PubMed ID: 16302259 [TBL] [Abstract][Full Text] [Related]
9. Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online. Bapat PM; Das D; Dave NN; Wangikar PP J Biotechnol; 2006 Dec; 127(1):115-28. PubMed ID: 16904217 [TBL] [Abstract][Full Text] [Related]
10. A cybernetic model to predict the effect of freely available nitrogen substrate on rifamycin B production in complex media. Bapat PM; Sohoni SV; Moses TA; Wangikar PP Appl Microbiol Biotechnol; 2006 Oct; 72(4):662-70. PubMed ID: 16534611 [TBL] [Abstract][Full Text] [Related]
11. A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Gupta A; Rao G Biotechnol Bioeng; 2003 Nov; 84(3):351-8. PubMed ID: 12968289 [TBL] [Abstract][Full Text] [Related]
12. High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae. Shang F; Wen S; Wang X; Tan T J Biosci Bioeng; 2006 Jan; 101(1):38-41. PubMed ID: 16503289 [TBL] [Abstract][Full Text] [Related]
13. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Gill NK; Appleton M; Baganz F; Lye GJ Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769 [TBL] [Abstract][Full Text] [Related]
14. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei. Nagavalli M; Ponamgi SP; Girijashankar V; Venkateswar Rao L Lett Appl Microbiol; 2015 Jan; 60(1):44-51. PubMed ID: 25256628 [TBL] [Abstract][Full Text] [Related]
15. Optimization of culture conditions and scale-up to pilot and plant scales for vancomycin production by Amycolatopsis orientalis. Jung HM; Kim SY; Moon HJ; Oh DK; Lee JK Appl Microbiol Biotechnol; 2007 Dec; 77(4):789-95. PubMed ID: 17938907 [TBL] [Abstract][Full Text] [Related]
16. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH. Seletzky JM; Noak U; Fricke J; Welk E; Eberhard W; Knocke C; Büchs J Biotechnol Bioeng; 2007 Nov; 98(4):800-11. PubMed ID: 17318907 [TBL] [Abstract][Full Text] [Related]
17. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Sun JB; Zhao F; Tang T; Jiang W; Tian JS; Li Y; Li JL Appl Microbiol Biotechnol; 2008 Jun; 79(3):389-97. PubMed ID: 18425510 [TBL] [Abstract][Full Text] [Related]
18. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Li X; Xu H; Wu Q Biotechnol Bioeng; 2007 Nov; 98(4):764-71. PubMed ID: 17497732 [TBL] [Abstract][Full Text] [Related]
19. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. Kundiyana DK; Huhnke RL; Wilkins MR J Biosci Bioeng; 2010 May; 109(5):492-8. PubMed ID: 20347773 [TBL] [Abstract][Full Text] [Related]
20. Research on fermentation scale-up based on the OUR obtained from a shake flask. Fan D; Shang L; Yu J Chin J Biotechnol; 1996; 12(3):177-84. PubMed ID: 9093760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]