These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15548215)

  • 1. Functional neuroanatomy of the human near/far response to blur cues: eye-lens accommodation/vergence to point targets varying in depth.
    Richter HO; Costello P; Sponheim SR; Lee JT; Pardo JV
    Eur J Neurosci; 2004 Nov; 20(10):2722-32. PubMed ID: 15548215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroanatomical correlates of the near response: voluntary modulation of accommodation/vergence in the human visual system.
    Richter HO; Lee JT; Pardo JV
    Eur J Neurosci; 2000 Jan; 12(1):311-21. PubMed ID: 10651886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroanatomical correlates of voluntary inhibition of accommodation/vergence under monocular open-loop viewing conditions.
    Richter HO; Andersson J; Schneider H; Långström B
    Eur J Neurosci; 2005 Jun; 21(11):3077-88. PubMed ID: 15978017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Neuroanatomy of the Human Accommodation Response to an "E" Target Varying from -3 to -6 Diopters.
    Lv X; Chen Y; Tan W; Yu Y; Zou H; Shao Y; Zan S; Tao J; Miao W
    Front Integr Neurosci; 2020; 14():29. PubMed ID: 32508603
    [No Abstract]   [Full Text] [Related]  

  • 5. Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics.
    Zhang H; Gamlin PD
    J Neurophysiol; 1998 Mar; 79(3):1255-69. PubMed ID: 9497407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visuomotor transformations for reaching to memorized targets: a PET study.
    Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F
    Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eyes open and eyes closed as rest conditions: impact on brain activation patterns.
    Marx E; Deutschländer A; Stephan T; Dieterich M; Wiesmann M; Brandt T
    Neuroimage; 2004 Apr; 21(4):1818-24. PubMed ID: 15050602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fMRI reveals a preference for near viewing in the human parieto-occipital cortex.
    Quinlan DJ; Culham JC
    Neuroimage; 2007 May; 36(1):167-87. PubMed ID: 17398117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Space-based and object-based visual attention: shared and specific neural domains.
    Fink GR; Dolan RJ; Halligan PW; Marshall JC; Frith CD
    Brain; 1997 Nov; 120 ( Pt 11)():2013-28. PubMed ID: 9397018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human cortical areas activated in relation to vergence eye movements-a PET study.
    Hasebe H; Oyamada H; Kinomura S; Kawashima R; Ouchi Y; Nobezawa S; Tsukada H; Yoshikawa E; Ukai K; Takada R; Takagi M; Abe H; Fukuda H; Bando T
    Neuroimage; 1999 Aug; 10(2):200-8. PubMed ID: 10417252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical correlates of vestibulo-ocular reflex modulation: a PET study.
    Naito Y; Tateya I; Hirano S; Inoue M; Funabiki K; Toyoda H; Ueno M; Ishizu K; Nagahama Y; Fukuyama H; Ito J
    Brain; 2003 Jul; 126(Pt 7):1562-78. PubMed ID: 12805122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual feedback about time estimation is related to a right hemisphere activation measured by PET.
    Brunia CH; de Jong BM; van den Berg-Lenssen MM; Paans AM
    Exp Brain Res; 2000 Feb; 130(3):328-37. PubMed ID: 10706432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations.
    Weiss PH; Marshall JC; Wunderlich G; Tellmann L; Halligan PW; Freund HJ; Zilles K; Fink GR
    Brain; 2000 Dec; 123 Pt 12():2531-41. PubMed ID: 11099454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation.
    Dieterich M; Bense S; Stephan T; Yousry TA; Brandt T
    Exp Brain Res; 2003 Jan; 148(1):117-27. PubMed ID: 12478402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PET study of the human foveal fixation system.
    Petit L; Dubois S; Tzourio N; Dejardin S; Crivello F; Michel C; Etard O; Denise P; Roucoux A; Mazoyer B
    Hum Brain Mapp; 1999; 8(1):28-43. PubMed ID: 10432180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural networks for internal reading and visual imagery of reading: a PET study.
    Gulyás B
    Brain Res Bull; 2001 Feb; 54(3):319-28. PubMed ID: 11287137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parieto-occipital cortex activation during self-generated eye movements in the dark.
    Law I; Svarer C; Rostrup E; Paulson OB
    Brain; 1998 Nov; 121 ( Pt 11)():2189-200. PubMed ID: 9827777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex.
    Mentis MJ; Alexander GE; Grady CL; Horwitz B; Krasuski J; Pietrini P; Strassburger T; Hampel H; Schapiro MB; Rapoport SI
    Neuroimage; 1997 Feb; 5(2):116-28. PubMed ID: 9345542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of apparent depth cues on accommodation in a Badal optometer.
    Otero C; Aldaba M; Martínez-Navarro B; Pujol J
    Clin Exp Optom; 2017 Nov; 100(6):649-655. PubMed ID: 28326607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions.
    Le TH; Pardo JV; Hu X
    J Neurophysiol; 1998 Mar; 79(3):1535-48. PubMed ID: 9497430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.