BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15548525)

  • 1. The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling.
    Buschbeck M; Ullrich A
    J Biol Chem; 2005 Jan; 280(4):2659-67. PubMed ID: 15548525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erk5 nuclear location is independent on dual phosphorylation, and favours resistance to TRAIL-induced apoptosis.
    Borges J; Pandiella A; Esparís-Ogando A
    Cell Signal; 2007 Jul; 19(7):1473-87. PubMed ID: 17317102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of ERK5 on Thr732 is associated with ERK5 nuclear localization and ERK5-dependent transcription.
    Honda T; Obara Y; Yamauchi A; Couvillon AD; Mason JJ; Ishii K; Nakahata N
    PLoS One; 2015; 10(2):e0117914. PubMed ID: 25689862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of nuclear translocation of extracellular signal-regulated kinase 5 by active nuclear import and export mechanisms.
    Kondoh K; Terasawa K; Morimoto H; Nishida E
    Mol Cell Biol; 2006 Mar; 26(5):1679-90. PubMed ID: 16478989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells, while MEKK2 translocates from the cytosol to the nucleus upon stimulation.
    Raviv Z; Kalie E; Seger R
    J Cell Sci; 2004 Apr; 117(Pt 9):1773-84. PubMed ID: 15075238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a Gatekeeper Residue in the C-Terminal Tail of the Extracellular Signal-Regulated Protein Kinase 5 (ERK5).
    Pearson AJ; Fullwood P; Toro Tapia G; Prise I; Smith MP; Xu Q; Jordan A; Giurisato E; Whitmarsh AJ; Francavilla C; Tournier C
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32023819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMOylation Is Required for ERK5 Nuclear Translocation and ERK5-Mediated Cancer Cell Proliferation.
    Erazo T; Espinosa-Gil S; Diéguez-Martínez N; Gómez N; Lizcano JM
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32209980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy.
    Tubita A; Lombardi Z; Tusa I; Dello Sbarba P; Rovida E
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32023850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisite phosphorylation of Erk5 in mitosis.
    Díaz-Rodríguez E; Pandiella A
    J Cell Sci; 2010 Sep; 123(Pt 18):3146-56. PubMed ID: 20736311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canonical and kinase activity-independent mechanisms for extracellular signal-regulated kinase 5 (ERK5) nuclear translocation require dissociation of Hsp90 from the ERK5-Cdc37 complex.
    Erazo T; Moreno A; Ruiz-Babot G; Rodríguez-Asiain A; Morrice NA; Espadamala J; Bayascas JR; Gómez N; Lizcano JM
    Mol Cell Biol; 2013 Apr; 33(8):1671-86. PubMed ID: 23428871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERK5 is targeted to myocyte enhancer factor 2A (MEF2A) through a MAPK docking motif.
    Barsyte-Lovejoy D; Galanis A; Clancy A; Sharrocks AD
    Biochem J; 2004 Aug; 381(Pt 3):693-9. PubMed ID: 15132737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative ERK5 regulation by phosphorylation during the cell cycle.
    Iñesta-Vaquera FA; Campbell DG; Tournier C; Gómez N; Lizcano JM; Cuenda A
    Cell Signal; 2010 Dec; 22(12):1829-37. PubMed ID: 20667468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel mitogen-activated protein kinase docking site in the N terminus of MEK5alpha organizes the components of the extracellular signal-regulated kinase 5 signaling pathway.
    Seyfried J; Wang X; Kharebava G; Tournier C
    Mol Cell Biol; 2005 Nov; 25(22):9820-8. PubMed ID: 16260599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of protein kinases mTOR and extracellular signal-regulated kinase 5 in regulating nucleocytoplasmic localization of NFATc4.
    Yang TT; Yu RY; Agadir A; Gao GJ; Campos-Gonzalez R; Tournier C; Chow CW
    Mol Cell Biol; 2008 May; 28(10):3489-501. PubMed ID: 18347059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways.
    Bin G; Bo Z; Jing W; Jin J; Xiaoyi T; Cong C; Liping A; Jinglin M; Cuifang W; Yonggang C; Yayi X
    Exp Cell Res; 2016 May; 343(2):208-217. PubMed ID: 27060196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAPK signalling: ERK5 versus ERK1/2.
    Nishimoto S; Nishida E
    EMBO Rep; 2006 Aug; 7(8):782-6. PubMed ID: 16880823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation by MAPK regulates simian immunodeficiency virus Vpx protein nuclear import and virus infectivity.
    Rajendra Kumar P; Singhal PK; Subba Rao MR; Mahalingam S
    J Biol Chem; 2005 Mar; 280(9):8553-63. PubMed ID: 15556948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation.
    Morimoto H; Kondoh K; Nishimoto S; Terasawa K; Nishida E
    J Biol Chem; 2007 Dec; 282(49):35449-56. PubMed ID: 17928297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of either ERK1/2 or ERK5 MAP kinase pathways can lead to disruption of the actin cytoskeleton.
    Barros JC; Marshall CJ
    J Cell Sci; 2005 Apr; 118(Pt 8):1663-71. PubMed ID: 15797923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains.
    Yan C; Luo H; Lee JD; Abe J; Berk BC
    J Biol Chem; 2001 Apr; 276(14):10870-8. PubMed ID: 11139578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.