BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 15548535)

  • 1. Mapping the rho1 GABA(C) receptor agonist binding pocket. Constructing a complete model.
    Sedelnikova A; Smith CD; Zakharkin SO; Davis D; Weiss DS; Chang Y
    J Biol Chem; 2005 Jan; 280(2):1535-42. PubMed ID: 15548535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.
    Zhang J; Xue F; Chang Y
    Mol Pharmacol; 2008 Oct; 74(4):941-51. PubMed ID: 18599601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of the GABA binding pocket: A narrowing cleft that constricts during activation.
    Wagner DA; Czajkowski C
    J Neurosci; 2001 Jan; 21(1):67-74. PubMed ID: 11150321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural rearrangements in loop F of the GABA receptor signal ligand binding, not channel activation.
    Khatri A; Sedelnikova A; Weiss DS
    Biophys J; 2009 Jan; 96(1):45-55. PubMed ID: 19134470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular modeling of ligand-receptor interactions in GABA C receptor.
    Osolodkin DI; Chupakhin VI; Palyulin VA; Zefirov NS
    J Mol Graph Model; 2009 Apr; 27(7):813-21. PubMed ID: 19167917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The agonist binding site of the gamma-aminobutyric acid type A channel is not formed by the extracellular cysteine loop.
    Amin J; Dickerson IM; Weiss DS
    Mol Pharmacol; 1994 Feb; 45(2):317-23. PubMed ID: 7509443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Role of Loop C Hydrophilic Residue 'T244' in the Binding Site of ρ1 GABAC Receptors via Site Mutation and Partial Agonism.
    Naffaa MM; Absalom N; Solomon VR; Chebib M; Hibbs DE; Hanrahan JR
    PLoS One; 2016; 11(5):e0156618. PubMed ID: 27244450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the ρ1 GABA(C) receptor N-terminus in assembly, trafficking and function.
    Wong LW; Tae HS; Cromer BA
    ACS Chem Neurosci; 2014 Dec; 5(12):1266-77. PubMed ID: 25347026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular basis for agonist and antagonist actions at GABA(C) receptors.
    Abdel-Halim H; Hanrahan JR; Hibbs DE; Johnston GA; Chebib M
    Chem Biol Drug Des; 2008 Apr; 71(4):306-27. PubMed ID: 18312293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA(A) receptor beta 2 Tyr97 and Leu99 line the GABA-binding site. Insights into mechanisms of agonist and antagonist actions.
    Boileau AJ; Newell JG; Czajkowski C
    J Biol Chem; 2002 Jan; 277(4):2931-7. PubMed ID: 11711541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural model for gamma-aminobutyric acid receptor noncompetitive antagonist binding: widely diverse structures fit the same site.
    Chen L; Durkin KA; Casida JE
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5185-90. PubMed ID: 16537435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural link between γ-aminobutyric acid type A (GABAA) receptor agonist binding site and inner β-sheet governs channel activation and allosteric drug modulation.
    Venkatachalan SP; Czajkowski C
    J Biol Chem; 2012 Feb; 287(9):6714-24. PubMed ID: 22219195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for coassembly of mutant GABAC rho1 with GABAA gamma2S, glycine alpha1 and glycine alpha2 receptor subunits in vitro.
    Pan ZH; Zhang D; Zhang X; Lipton SA
    Eur J Neurosci; 2000 Sep; 12(9):3137-45. PubMed ID: 10998097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four amino acids in the alpha subunits determine the gamma-aminobutyric acid sensitivities of GABAA receptor subtypes.
    Böhme I; Rabe H; Lüddens H
    J Biol Chem; 2004 Aug; 279(34):35193-200. PubMed ID: 15199051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural γ
    Ayan M; Essiz S
    J Mol Model; 2018 Jul; 24(8):206. PubMed ID: 30008086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three arginines in the GABAA receptor binding pocket have distinct roles in the formation and stability of agonist- versus antagonist-bound complexes.
    Goldschen-Ohm MP; Wagner DA; Jones MV
    Mol Pharmacol; 2011 Oct; 80(4):647-56. PubMed ID: 21764985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agonist-induced closure of constitutively open gamma-aminobutyric acid channels with mutated M2 domains.
    Pan ZH; Zhang D; Zhang X; Lipton SA
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6490-5. PubMed ID: 9177245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separate domains for desensitization of GABA rho 1 and beta 2 subunits expressed in Xenopus oocytes.
    Lu L; Huang Y
    J Membr Biol; 1998 Jul; 164(2):115-24. PubMed ID: 9662556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The enantiomers of syn-2,3-difluoro-4-aminobutyric acid elicit opposite responses at the GABA(C) receptor.
    Yamamoto I; Jordan MJ; Gavande N; Doddareddy MR; Chebib M; Hunter L
    Chem Commun (Camb); 2012 Jan; 48(6):829-31. PubMed ID: 22143050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single hydrophobic residue confers barbiturate sensitivity to gamma-aminobutyric acid type C receptor.
    Amin J
    Mol Pharmacol; 1999 Mar; 55(3):411-23. PubMed ID: 10051524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.