BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15548548)

  • 1. Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington's disease: neuronal selectivity and potential neuroprotective role of HAP1.
    Zucker B; Luthi-Carter R; Kama JA; Dunah AW; Stern EA; Fox JH; Standaert DG; Young AB; Augood SJ
    Hum Mol Genet; 2005 Jan; 14(2):179-89. PubMed ID: 15548548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington's mouse model.
    Jarabek BR; Yasuda RP; Wolfe BB
    Brain; 2004 Mar; 127(Pt 3):505-16. PubMed ID: 14662521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of postsynaptic density protein-95 with NMDA receptors influences excitotoxicity in the yeast artificial chromosome mouse model of Huntington's disease.
    Fan J; Cowan CM; Zhang LY; Hayden MR; Raymond LA
    J Neurosci; 2009 Sep; 29(35):10928-38. PubMed ID: 19726651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington's disease and mouse models.
    Horne EA; Coy J; Swinney K; Fung S; Cherry AE; Marrs WR; Naydenov AV; Lin YH; Sun X; Keene CD; Grouzmann E; Muchowski P; Bates GP; Mackie K; Stella N
    Eur J Neurosci; 2013 Feb; 37(3):429-40. PubMed ID: 23167744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal vulnerability in mouse models of Huntington's disease: membrane channel protein changes.
    Ariano MA; Wagle N; Grissell AE
    J Neurosci Res; 2005 Jun; 80(5):634-45. PubMed ID: 15880743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine A2A receptor antagonism increases nNOS-immunoreactive neurons in the striatum of Huntington transgenic mice.
    Cipriani S; Bizzoco E; Gianfriddo M; Melani A; Vannucchi MG; Pedata F
    Exp Neurol; 2008 Sep; 213(1):163-70. PubMed ID: 18586241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.
    Starling AJ; André VM; Cepeda C; de Lima M; Chandler SH; Levine MS
    J Neurosci Res; 2005 Nov; 82(3):377-86. PubMed ID: 16211559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of nitric oxide production by association of nitric oxide synthase with N-methyl-D-aspartate receptors via postsynaptic density 95 in genetically engineered Chinese hamster ovary cells: real-time fluorescence imaging using nitric oxide sensitive dye.
    Ishii H; Shibuya K; Ohta Y; Mukai H; Uchino S; Takata N; Rose JA; Kawato S
    J Neurochem; 2006 Mar; 96(6):1531-9. PubMed ID: 16464237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age- and sex-related changes in cortical and striatal nitric oxide synthase in the Q175 mouse model of Huntington's disease.
    Padovan-Neto FE; Jurkowski L; Murray C; Stutzmann GE; Kwan M; Ghavami A; Beaumont V; Park LC; West AR
    Nitric Oxide; 2019 Feb; 83():40-50. PubMed ID: 30528913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.
    Rajput PS; Kharmate G; Norman M; Liu SH; Sastry BR; Brunicardi CF; Kumar U
    PLoS One; 2011; 6(9):e24467. PubMed ID: 21912697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase.
    Watanabe Y; Song T; Sugimoto K; Horii M; Araki N; Tokumitsu H; Tezuka T; Yamamoto T; Tokuda M
    Biochem J; 2003 Jun; 372(Pt 2):465-71. PubMed ID: 12630910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex alteration of NMDA receptors in transgenic Huntington's disease mouse brain: analysis of mRNA and protein expression, plasma membrane association, interacting proteins, and phosphorylation.
    Luthi-Carter R; Apostol BL; Dunah AW; DeJohn MM; Farrell LA; Bates GP; Young AB; Standaert DG; Thompson LM; Cha JH
    Neurobiol Dis; 2003 Dec; 14(3):624-36. PubMed ID: 14678777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Huntingtin-associated protein (HAP1): discrete neuronal localizations in the brain resemble those of neuronal nitric oxide synthase.
    Li XJ; Sharp AH; Li SH; Dawson TM; Snyder SH; Ross CA
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4839-44. PubMed ID: 8643490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution.
    Abulrob A; Tauskela JS; Mealing G; Brunette E; Faid K; Stanimirovic D
    J Neurochem; 2005 Mar; 92(6):1477-86. PubMed ID: 15748165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: implications for ischemia and Huntington's disease.
    Calabresi P; Centonze D; Pisani A; Sancesario G; Gubellini P; Marfia GA; Bernardi G
    Ann Neurol; 1998 May; 43(5):586-97. PubMed ID: 9585352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of striatal cultures with the effect of QUIN and NMDA.
    Kumar U
    Neurosci Res; 2004 May; 49(1):29-38. PubMed ID: 15099701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered neuronal nitric oxide synthase expression contributes to disease progression in Huntington's disease transgenic mice.
    Deckel AW; Tang V; Nuttal D; Gary K; Elder R
    Brain Res; 2002 Jun; 939(1-2):76-86. PubMed ID: 12020853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease.
    Li L; Fan M; Icton CD; Chen N; Leavitt BR; Hayden MR; Murphy TH; Raymond LA
    Neurobiol Aging; 2003 Dec; 24(8):1113-21. PubMed ID: 14643383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical localization of receptor for advanced glycation end (RAGE) products in the R6/2 mouse model of Huntington's disease.
    Anzilotti S; GiampĂ  C; Laurenti D; Perrone L; Bernardi G; Melone MA; Fusco FR
    Brain Res Bull; 2012 Feb; 87(2-3):350-8. PubMed ID: 21272617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein.
    Sattler R; Xiong Z; Lu WY; Hafner M; MacDonald JF; Tymianski M
    Science; 1999 Jun; 284(5421):1845-8. PubMed ID: 10364559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.