These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 15548651)

  • 21. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro.
    Lukatch HS; MacIver MB
    J Neurophysiol; 1997 May; 77(5):2427-45. PubMed ID: 9163368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationships between image structure and gamma oscillations and synchronization in visual cortex of cats.
    Molotchnikoff S; Shumikhina S
    Eur J Neurosci; 2000 Apr; 12(4):1440-52. PubMed ID: 10762372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blockade of cholinergic receptors in rat barrel cortex prevents long-term changes in the evoked potential during sensory preconditioning.
    Maalouf M; Miasnikov AA; Dykes RW
    J Neurophysiol; 1998 Aug; 80(2):529-45. PubMed ID: 9705448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetylcholine-induced inhibition in the cat visual cortex is mediated by a GABAergic mechanism.
    Müller CM; Singer W
    Brain Res; 1989 May; 487(2):335-42. PubMed ID: 2731048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo modulation of a cortical functional sensory representation shortly after topical cholinergic agent application.
    Penschuck S; Chen-Bee CH; Prakash N; Frostig RD
    J Comp Neurol; 2002 Oct; 452(1):38-50. PubMed ID: 12205708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of thalamo-cortical long-term potentiation by the amygdala: cholinergic and transcription-dependent mechanisms.
    Dringenberg HC; Kuo MC; Tomaszek S
    Eur J Neurosci; 2004 Jul; 20(2):557-65. PubMed ID: 15233765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulus-dependent gamma (30-50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex.
    Cardin JA; Palmer LA; Contreras D
    J Neurosci; 2005 Jun; 25(22):5339-50. PubMed ID: 15930382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The participation of cholinergic mechanisms in the origin of the dendritic potential of the cerebral cortex].
    Gedevanishvili GI
    Fiziol Zh SSSR Im I M Sechenova; 1990 Feb; 76(2):145-51. PubMed ID: 2163905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain activation, then (1949) and now: coherent fast rhythms in corticothalamic networks.
    Steriade M
    Arch Ital Biol; 1995 Dec; 134(1):5-20. PubMed ID: 8919189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholinergic effects on cat retina In vitro: changes in rod- and cone-driven b-wave and optic nerve response.
    Jurklies B; Kaelin-Lang A; Niemeyer G
    Vision Res; 1996 Mar; 36(6):797-816. PubMed ID: 8736216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cholinergic modulation of single lateral geniculate neurons in the cat.
    Matsuoka I; Domino EF
    Neuropharmacology; 1972 Mar; 11(2):241-51. PubMed ID: 4554527
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects of agonists and antagonists of NMDA and ACh receptors on plasticity of bat auditory system elicited by fear conditioning.
    Ji W; Suga N; Gao E
    J Neurophysiol; 2005 Aug; 94(2):1199-211. PubMed ID: 16061490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immediate effects of total visual deafferentation on single unit activity in the visual cortex of freely behaving cats. I. Tonic excitability changes.
    Kasamatsu T; Adey WR
    Exp Brain Res; 1974; 20(2):157-70. PubMed ID: 4365929
    [No Abstract]   [Full Text] [Related]  

  • 34. Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo.
    Hanganu IL; Staiger JF; Ben-Ari Y; Khazipov R
    J Neurosci; 2007 May; 27(21):5694-705. PubMed ID: 17522314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blockade of muscarinic, rather than nicotinic, receptors impairs attention, but does not interact with serotonin depletion.
    Ruotsalainen S; Miettinen R; MacDonald E; Koivisto E; Sirviö J
    Psychopharmacology (Berl); 2000 Feb; 148(2):111-23. PubMed ID: 10663425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex.
    Lucas-Meunier E; Monier C; Amar M; Baux G; Frégnac Y; Fossier P
    Cereb Cortex; 2009 Oct; 19(10):2411-27. PubMed ID: 19176636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Basal forebrain activation enhances between-trial reliability of low-frequency local field potentials (LFP) and spiking activity in tree shrew primary visual cortex (V1).
    De Luna P; Veit J; Rainer G
    Brain Struct Funct; 2017 Dec; 222(9):4239-4252. PubMed ID: 28660418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slow synchronized bursts of inhibitory postsynaptic currents (0.1-0.3 Hz) by cholinergic stimulation in the rat frontal cortex in vitro.
    Kondo S; Kawaguchi Y
    Neuroscience; 2001; 107(4):551-60. PubMed ID: 11720779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats.
    Siegel M; König P
    J Neurosci; 2003 May; 23(10):4251-60. PubMed ID: 12764113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of pedunculopontine nucleus (PPN) stimulation on caudal pontine reticular formation (PnC) neurons in vitro.
    Homma Y; Skinner RD; Garcia-Rill E
    J Neurophysiol; 2002 Jun; 87(6):3033-47. PubMed ID: 12037206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.