BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 15548664)

  • 1. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness.
    Mieda M; Williams SC; Sinton CM; Richardson JA; Sakurai T; Yanagisawa M
    J Neurosci; 2004 Nov; 24(46):10493-501. PubMed ID: 15548664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice.
    Akiyama M; Yuasa T; Hayasaka N; Horikawa K; Sakurai T; Shibata S
    Eur J Neurosci; 2004 Dec; 20(11):3054-62. PubMed ID: 15579160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness.
    Tabuchi S; Tsunematsu T; Kilduff TS; Sugio S; Xu M; Tanaka KF; Takahashi S; Tominaga M; Yamanaka A
    Sleep; 2013 Sep; 36(9):1391-404. PubMed ID: 23997373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orexin neurons are necessary for the circadian control of REM sleep.
    Kantor S; Mochizuki T; Janisiewicz AM; Clark E; Nishino S; Scammell TE
    Sleep; 2009 Sep; 32(9):1127-34. PubMed ID: 19750917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral state instability in orexin knock-out mice.
    Mochizuki T; Crocker A; McCormack S; Yanagisawa M; Sakurai T; Scammell TE
    J Neurosci; 2004 Jul; 24(28):6291-300. PubMed ID: 15254084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice.
    Kaur S; Thankachan S; Begum S; Blanco-Centurion C; Sakurai T; Yanagisawa M; Shiromani PJ
    Brain Res; 2008 Apr; 1205():47-54. PubMed ID: 18343358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. To eat or to sleep? Orexin in the regulation of feeding and wakefulness.
    Willie JT; Chemelli RM; Sinton CM; Yanagisawa M
    Annu Rev Neurosci; 2001; 24():429-58. PubMed ID: 11283317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fos expression in orexin neurons varies with behavioral state.
    Estabrooke IV; McCarthy MT; Ko E; Chou TC; Chemelli RM; Yanagisawa M; Saper CB; Scammell TE
    J Neurosci; 2001 Mar; 21(5):1656-62. PubMed ID: 11222656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness.
    Ohno K; Sakurai T
    Front Neuroendocrinol; 2008 Jan; 29(1):70-87. PubMed ID: 17910982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor.
    Muraki Y; Yamanaka A; Tsujino N; Kilduff TS; Goto K; Sakurai T
    J Neurosci; 2004 Aug; 24(32):7159-66. PubMed ID: 15306649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feeding-elicited cataplexy in orexin knockout mice.
    Clark EL; Baumann CR; Cano G; Scammell TE; Mochizuki T
    Neuroscience; 2009 Jul; 161(4):970-7. PubMed ID: 19362119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orexin gene therapy restores the timing and maintenance of wakefulness in narcoleptic mice.
    Kantor S; Mochizuki T; Lops SN; Ko B; Clain E; Clark E; Yamamoto M; Scammell TE
    Sleep; 2013 Aug; 36(8):1129-38. PubMed ID: 23904672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models.
    Anaclet C; Parmentier R; Ouk K; Guidon G; Buda C; Sastre JP; Akaoka H; Sergeeva OA; Yanagisawa M; Ohtsu H; Franco P; Haas HL; Lin JS
    J Neurosci; 2009 Nov; 29(46):14423-38. PubMed ID: 19923277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sleep-wake cycle, the hypocretin/orexin system and narcolepsy: advances from preclinical research to treatment.
    Arias-Carrión O; Bradbury M
    CNS Neurol Disord Drug Targets; 2009 Aug; 8(4):232-4. PubMed ID: 19689304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy.
    Zhang S; Zeitzer JM; Sakurai T; Nishino S; Mignot E
    J Physiol; 2007 Jun; 581(Pt 2):649-63. PubMed ID: 17379635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin.
    España RA; Plahn S; Berridge CW
    Brain Res; 2002 Jul; 943(2):224-36. PubMed ID: 12101045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture.
    Matsuki T; Nomiyama M; Takahira H; Hirashima N; Kunita S; Takahashi S; Yagami K; Kilduff TS; Bettler B; Yanagisawa M; Sakurai T
    Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4459-64. PubMed ID: 19246384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of hypothermia on emergence from isoflurane anesthesia in orexin neuron-ablated mice.
    Kuroki C; Takahashi Y; Ootsuka Y; Kanmura Y; Kuwaki T
    Anesth Analg; 2013 May; 116(5):1001-1005. PubMed ID: 23477964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food- and light-entrained circadian rhythms in rats with hypocretin-2-saporin ablations of the lateral hypothalamus.
    Mistlberger RE; Antle MC; Kilduff TS; Jones M
    Brain Res; 2003 Aug; 980(2):161-8. PubMed ID: 12867254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.