BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 15548877)

  • 1. Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles.
    Sinek J; Frieboes H; Zheng X; Cristini V
    Biomed Microdevices; 2004 Dec; 6(4):297-309. PubMed ID: 15548877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model.
    Poleszczuk J; Bodnar M; Foryś U
    Math Biosci Eng; 2011 Apr; 8(2):591-603. PubMed ID: 21631148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis.
    Schättler H; Ledzewicz U; Cardwell B
    Math Biosci Eng; 2011 Apr; 8(2):355-69. PubMed ID: 21631134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy.
    Ledzewicz U; Maurer H; Schättler H
    Math Biosci Eng; 2011 Apr; 8(2):307-23. PubMed ID: 21631132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.
    Danhier F; Feron O; Préat V
    J Control Release; 2010 Dec; 148(2):135-46. PubMed ID: 20797419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extravasation of polymeric nanomedicines across tumor vasculature.
    Danquah MK; Zhang XA; Mahato RI
    Adv Drug Deliv Rev; 2011 Jul; 63(8):623-39. PubMed ID: 21144874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method.
    Zheng X; Wise SM; Cristini V
    Bull Math Biol; 2005 Mar; 67(2):211-59. PubMed ID: 15710180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy.
    Garcia-Bennett A; Nees M; Fadeel B
    Biochem Pharmacol; 2011 Apr; 81(8):976-84. PubMed ID: 21300030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical issues in site-specific targeting of solid tumours: the carrier, the tumour barriers and the bioavailable drug.
    Hamad I; Moghimi SM
    Expert Opin Drug Deliv; 2008 Feb; 5(2):205-19. PubMed ID: 18248319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and development of polymer conjugates as anti-angiogenic agents.
    Segal E; Satchi-Fainaro R
    Adv Drug Deliv Rev; 2009 Nov; 61(13):1159-76. PubMed ID: 19699248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticles for delivery of chemotherapeutic agents to tumors.
    Vijayaraghavalu S; Raghavan D; Labhasetwar V
    Curr Opin Investig Drugs; 2007 Jun; 8(6):477-84. PubMed ID: 17621878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature.
    Chou CY; Chang WI; Horng TL; Lin WL
    PLoS One; 2017; 12(12):e0189802. PubMed ID: 29287079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect.
    Maeda H; Bharate GY; Daruwalla J
    Eur J Pharm Biopharm; 2009 Mar; 71(3):409-19. PubMed ID: 19070661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The possible role of chemotherapy in antiangiogenic drug resistance.
    Bocci G; Loupakis F
    Med Hypotheses; 2012 May; 78(5):646-8. PubMed ID: 22365648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor cells proliferation and migration under the influence of their microenvironment.
    Friedman A; Kim Y
    Math Biosci Eng; 2011 Apr; 8(2):371-83. PubMed ID: 21631135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model.
    Baish JW; Gazit Y; Berk DA; Nozue M; Baxter LT; Jain RK
    Microvasc Res; 1996 May; 51(3):327-46. PubMed ID: 8992232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model.
    Iliadis A; Barbolosi D
    Comput Biomed Res; 2000 Jun; 33(3):211-26. PubMed ID: 10860586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dermatan carriers for neovascular transport targeting, deep tumor penetration and improved therapy.
    Ranney D; Antich P; Dadey E; Mason R; Kulkarni P; Singh O; Chen H; Constantanescu A; Parkey R
    J Control Release; 2005 Dec; 109(1-3):222-35. PubMed ID: 16290245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.