These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 15550528)

  • 1. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model.
    Arts T; Delhaas T; Bovendeerd P; Verbeek X; Prinzen FW
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1943-54. PubMed ID: 15550528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.
    Nguyen PH; Tuzun E; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R522-31. PubMed ID: 27306830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The complex distribution of arterial system mechanical properties, pulsatile hemodynamics, and vascular stresses emerges from three simple adaptive rules.
    Nguyen PH; Coquis-Knezek SF; Mohiuddin MW; Tuzun E; Quick CM
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(5):H407-15. PubMed ID: 25502109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model approach to the adaptation of cardiac structure by mechanical feedback in the environment of the cell.
    Arts T; Prinzen FW; Snoeckx LH; Reneman RS
    Adv Exp Med Biol; 1995; 382():217-28. PubMed ID: 8540398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the relation between cardiac pump function and myofiber mechanics.
    Arts T; Bovendeerd P; Delhaas T; Prinzen F
    J Biomech; 2003 May; 36(5):731-6. PubMed ID: 12695003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of whole heart geometry by intramyocardial mechano-feedback: a model study.
    Arts T; Lumens J; Kroon W; Delhaas T
    PLoS Comput Biol; 2012 Feb; 8(2):e1002369. PubMed ID: 22346742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study.
    Wu J; Liu G; Huang W; Ghista DN; Wong KK
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1835-45. PubMed ID: 25398021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of cardiac structure by mechanical feedback in the environment of the cell: a model study.
    Arts T; Prinzen FW; Snoeckx LH; Rijcken JM; Reneman RS
    Biophys J; 1994 Apr; 66(4):953-61. PubMed ID: 8038399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large vessels as a tree of transmission lines incorporated in the CircAdapt whole-heart model: A computational tool to examine heart-vessel interaction.
    Heusinkveld MHG; Huberts W; Lumens J; Arts T; Delhaas T; Reesink KD
    PLoS Comput Biol; 2019 Jul; 15(7):e1007173. PubMed ID: 31306411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementing sparse vascular imaging data by physiological adaptation rules.
    Heusinkveld MHG; Holtackers RJ; Adriaans BP; Op't Roodt J; Arts T; Delhaas T; Reesink KD; Huberts W
    J Appl Physiol (1985); 2021 Mar; 130(3):571-588. PubMed ID: 33119465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term hemodynamic mechanism of enhanced external counterpulsation in the treatment of coronary heart disease: a geometric multiscale simulation.
    Li B; Wang W; Mao B; Yang H; Niu H; Du J; Li X; Liu Y
    Med Biol Eng Comput; 2019 Nov; 57(11):2417-2433. PubMed ID: 31522354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and torsion in the normal and situs inversus totalis cardiac left ventricle. II. Modeling cardiac adaptation to mechanical load.
    Kroon W; Delhaas T; Bovendeerd P; Arts T
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H202-10. PubMed ID: 18424633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of myocardial constraint on the passive mechanical behaviors of the coronary vessel wall.
    Liu Y; Zhang W; Kassab GS
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H514-23. PubMed ID: 17993601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Right ventricular free wall pacing improves cardiac pump function in severe pulmonary arterial hypertension: a computer simulation analysis.
    Lumens J; Arts T; Broers B; Boomars KA; van Paassen P; Prinzen FW; Delhaas T
    Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2196-205. PubMed ID: 19837949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.
    Pries AR; Reglin B; Secomb TW
    Hypertension; 2005 Oct; 46(4):725-31. PubMed ID: 16172421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of wall shear stress in microvascular network adaptation.
    Hudetz AG; Kiani MF
    Adv Exp Med Biol; 1992; 316():31-9. PubMed ID: 1288092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries.
    Beier S; Ormiston J; Webster M; Cater J; Norris S; Medrano-Gracia P; Young A; Cowan B
    J Biomech; 2016 Jun; 49(9):1570-1582. PubMed ID: 27062590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.