These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 15550528)

  • 21. Computation of hemodynamics in the left coronary artery with variable angulations.
    Chaichana T; Sun Z; Jewkes J
    J Biomech; 2011 Jul; 44(10):1869-78. PubMed ID: 21550611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cardiovascular system as coupled oscillators?
    Stefanovska A; Lotric MB; Strle S; Haken H
    Physiol Meas; 2001 Aug; 22(3):535-50. PubMed ID: 11556673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homogenization modeling for the mechanics of perfused myocardium.
    May-Newman K; McCulloch AD
    Prog Biophys Mol Biol; 1998; 69(2-3):463-81. PubMed ID: 9785951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical modelling of the maternal cardiovascular system in the three stages of pregnancy.
    Corsini C; Cervi E; Migliavacca F; Schievano S; Hsia TY; Pennati G
    Med Eng Phys; 2017 Sep; 47():55-63. PubMed ID: 28694109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microstructure of early embryonic aortic arch and its reversibility following mechanically altered hemodynamic load release.
    Celik M; Goktas S; Karakaya C; Cakiroglu AI; Karahuseyinoglu S; Lashkarinia SS; Ermek E; Pekkan K
    Am J Physiol Heart Circ Physiol; 2020 May; 318(5):H1208-H1218. PubMed ID: 32243769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A patient-specific virtual stenotic model of the coronary artery to analyze the relationship between fractional flow reserve and wall shear stress.
    Lee KE; Kim GT; Lee JS; Chung JH; Shin ES; Shim EB
    Int J Cardiol; 2016 Nov; 222():799-805. PubMed ID: 27522378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological adaptation of the cardiovascular system to high altitude.
    Naeije R
    Prog Cardiovasc Dis; 2010; 52(6):456-66. PubMed ID: 20417339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.
    Glagov S; Zarins C; Giddens DP; Ku DN
    Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro cardiovascular system emulator (bioreactor) for the simulation of normal and diseased conditions with and without mechanical circulatory support.
    Ruiz P; Rezaienia MA; Rahideh A; Keeble TR; Rothman MT; Korakianitis T
    Artif Organs; 2013 Jun; 37(6):549-60. PubMed ID: 23758568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Comparative characteristics of systemic and pulmonary hemodynamics during changes in the heart preloading].
    Iurov AIu; Samoĭlenko AV
    Ross Fiziol Zh Im I M Sechenova; 2002 Dec; 88(12):1559-66. PubMed ID: 12852215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling of cardiovascular system: development of a hybrid (numerical-physical) model.
    Ferrari G; Kozarski M; De Lazzari C; Górczyńska K; Mimmo R; Guaragno M; Tosti G; Darowski M
    Int J Artif Organs; 2003 Dec; 26(12):1104-14. PubMed ID: 14738194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity of stress and strain calculations to passive material parameters in cardiac mechanical models using unloaded geometries.
    Kallhovd S; Sundnes J; Wall ST
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):664-675. PubMed ID: 30822148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regional fibre stress-fibre strain area as an estimate of regional blood flow and oxygen demand in the canine heart.
    Delhaas T; Arts T; Prinzen FW; Reneman RS
    J Physiol; 1994 Jun; 477 ( Pt 3)(Pt 3):481-96. PubMed ID: 7932236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite element modeling of the pulmonary autograft at systemic pressure before remodeling.
    Matthews PB; Jhun CS; Yaung S; Azadani AN; Guccione JM; Ge L; Tseng EE
    J Heart Valve Dis; 2011 Jan; 20(1):45-52. PubMed ID: 21404897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemodynamic analysis and design of a paracorporeal artificial lung device.
    Ha RR; Wang D; Zwischenberger JB; Clark JW
    Cardiovasc Eng; 2006 Mar; 6(1):10-29. PubMed ID: 16900418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide and prostacyclin mediate coronary shear force-induced alterations in cardiac electrophysiology.
    Wang L; Feng G
    Med Hypotheses; 2004; 63(3):434-7. PubMed ID: 15288362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical compression of small coronary vessels during the cardiac cycle.
    Oddou C; Razakamiadana A
    Biorheology; 1993; 30(5-6):387-96. PubMed ID: 8186405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physical and computer modelling of blood flow in a systemic-to-pulmonary shunt.
    Malota Z; Nawrat Z; Kostka P; Mizerski J; Nowinski K; Waniewski J
    Int J Artif Organs; 2004 Nov; 27(11):990-9. PubMed ID: 15636057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.