These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15550549)

  • 1. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory.
    Espinoza RE; Wiens JJ; Tracy CR
    Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16819-24. PubMed ID: 15550549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of viviparity: a phylogenetic test of the cold-climate hypothesis in phrynosomatid lizards.
    Lambert SM; Wiens JJ
    Evolution; 2013 Sep; 67(9):2614-30. PubMed ID: 24033171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant lizards occupied herbivorous mammalian ecospace during the Paleogene greenhouse in Southeast Asia.
    Head JJ; Gunnell GF; Holroyd PA; Hutchison JH; Ciochon RL
    Proc Biol Sci; 2013 Jul; 280(1763):20130665. PubMed ID: 23740779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroevolutionary diversification with limited niche disparity in a species-rich lineage of cold-climate lizards.
    Reaney AM; Saldarriaga-Córdoba M; Pincheira-Donoso D
    BMC Evol Biol; 2018 Feb; 18(1):16. PubMed ID: 29409440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproductive mode evolution in lizards revisited: updated analyses examining geographic, climatic and phylogenetic effects support the cold-climate hypothesis.
    Watson CM; Makowsky R; Bagley JC
    J Evol Biol; 2014 Dec; 27(12):2767-80. PubMed ID: 25365910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential targets for selection during the evolution of viviparity in cold-climate reptiles.
    Li H; Elphick M; Shine R
    Oecologia; 2017 Jan; 183(1):21-30. PubMed ID: 27743167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early origin of viviparity and multiple reversions to oviparity in squamate reptiles.
    Pyron RA; Burbrink FT
    Ecol Lett; 2014 Jan; 17(1):13-21. PubMed ID: 23953272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary transitions in diet influence the exceptional diversification of a lizard adaptive radiation.
    Ocampo M; Pincheira-Donoso D; Sayol F; Rios RS
    BMC Ecol Evol; 2022 Jun; 22(1):74. PubMed ID: 35672668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversification rates are more strongly related to microhabitat than climate in squamate reptiles (lizards and snakes).
    Bars-Closel M; Kohlsdorf T; Moen DS; Wiens JJ
    Evolution; 2017 Sep; 71(9):2243-2261. PubMed ID: 28815567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes.
    Vidal N; Hedges SB
    C R Biol; 2005; 328(10-11):1000-8. PubMed ID: 16286089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal shifts along the oviparity-viviparity continuum in a cold-climate lizard population.
    Shine R; Wapstra E; Olsson M
    J Evol Biol; 2018 Jan; 31(1):4-13. PubMed ID: 29080390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlating diet and digestive tract specialization: examples from the lizard family Liolaemidae.
    O'Grady SP; Morando M; Avila L; Dearing MD
    Zoology (Jena); 2005; 108(3):201-10. PubMed ID: 16351968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard.
    Kohl KD; Brun A; Magallanes M; Brinkerhoff J; Laspiur A; Acosta JC; Bordenstein SR; Caviedes-Vidal E
    J Exp Biol; 2016 Jun; 219(Pt 12):1903-12. PubMed ID: 27307545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of viviparity in horned lizards (Phrynosoma): testing the cold-climate hypothesis.
    Hodges WL
    J Evol Biol; 2004 Nov; 17(6):1230-7. PubMed ID: 15525408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early evolution of the venom system in lizards and snakes.
    Fry BG; Vidal N; Norman JA; Vonk FJ; Scheib H; Ramjan SF; Kuruppu S; Fung K; Hedges SB; Richardson MK; Hodgson WC; Ignjatovic V; Summerhayes R; Kochva E
    Nature; 2006 Feb; 439(7076):584-8. PubMed ID: 16292255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. History and the global ecology of squamate reptiles.
    Vitt LJ; Pianka ER; Cooper WE; Schwenk K
    Am Nat; 2003 Jul; 162(1):44-60. PubMed ID: 12856236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes.
    Pyron RA; Burbrink FT; Wiens JJ
    BMC Evol Biol; 2013 Apr; 13():93. PubMed ID: 23627680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproductive strategies in males of the world's southernmost lizards.
    Fernández JB; Medina M; Kubisch EL; Scolaro JA; Ibargüengoytía NR
    Integr Zool; 2017 Mar; 12(2):132-147. PubMed ID: 27580252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Diet in Shaping the Chemical Signal Design of Lacertid Lizards.
    Baeckens S; García-Roa R; Martín J; Van Damme R
    J Chem Ecol; 2017 Sep; 43(9):902-910. PubMed ID: 28918590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ; While GM; Beeton NJ; Wapstra E
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.