BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 15550667)

  • 1. Multifunctional carbon nanotube yarns by downsizing an ancient technology.
    Zhang M; Atkinson KR; Baughman RH
    Science; 2004 Nov; 306(5700):1358-61. PubMed ID: 15550667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.
    Liu K; Sun Y; Zhou R; Zhu H; Wang J; Liu L; Fan S; Jiang K
    Nanotechnology; 2010 Jan; 21(4):045708. PubMed ID: 20009208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.
    Liu K; Sun Y; Lin X; Zhou R; Wang J; Fan S; Jiang K
    ACS Nano; 2010 Oct; 4(10):5827-34. PubMed ID: 20831235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biscrolling nanotube sheets and functional guests into yarns.
    Lima MD; Fang S; Lepró X; Lewis C; Ovalle-Robles R; Carretero-González J; Castillo-Martínez E; Kozlov ME; Oh J; Rawat N; Haines CS; Haque MH; Aare V; Stoughton S; Zakhidov AA; Baughman RH
    Science; 2011 Jan; 331(6013):51-5. PubMed ID: 21212350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of twist and porosity on the electrical conductivity of carbon nanofiber yarns.
    Chawla S; Naraghi M; Davoudi A
    Nanotechnology; 2013 Jun; 24(25):255708. PubMed ID: 23727878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic conductivity transition of carbon nanotube yarns coated with silver particles.
    Zhang D; Zhang Y; Miao M
    Nanotechnology; 2014 Jul; 25(27):275702. PubMed ID: 24960558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of hybrid conducting polymer-carbon nanotube yarn.
    Foroughi J; Spinks GM; Ghorbani SR; Kozlov ME; Safaei F; Peleckis G; Wallace GG; Baughman RH
    Nanoscale; 2012 Feb; 4(3):940-5. PubMed ID: 22173836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scale and twist effects on the strength of nanostructured yarns and reinforced composites.
    Beyerlein IJ; Porwal PK; Zhu YT; Hu K; Xu XF
    Nanotechnology; 2009 Dec; 20(48):485702. PubMed ID: 19880980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.
    Liu K; Zhu F; Liu L; Sun Y; Fan S; Jiang K
    Nanoscale; 2012 Jun; 4(11):3389-93. PubMed ID: 22538869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.
    Misak HE; Sabelkin V; Miller L; Asmatulu R; Mall S
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8331-9. PubMed ID: 24266232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiscale study of high performance double-walled nanotube-polymer fibers.
    Naraghi M; Filleter T; Moravsky A; Locascio M; Loutfy RO; Espinosa HD
    ACS Nano; 2010 Nov; 4(11):6463-76. PubMed ID: 20977259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly twisted double-helix carbon nanotube yarns.
    Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A
    ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional composites using reinforced laminae with carbon-nanotube forests.
    Veedu VP; Cao A; Li X; Ma K; Soldano C; Kar S; Ajayan PM; Ghasemi-Nejhad MN
    Nat Mater; 2006 Jun; 5(6):457-62. PubMed ID: 16680146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Power of Fiber Twist.
    Zhou X; Fang S; Leng X; Liu Z; Baughman RH
    Acc Chem Res; 2021 Jun; 54(11):2624-2636. PubMed ID: 33982565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods.
    Watanabe T; Yamazaki S; Yamashita S; Inaba T; Muroga S; Morimoto T; Kobashi K; Okazaki T
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Temperature Cross-Linking of Carbon Nanotube Multi-Yarn Using Polyvinylpyrrolidone as a Binding Agent.
    Misak H; Asmatulu R; Whitman J; Mall S
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2283-8. PubMed ID: 26413653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic carbon nanotube straight yarns embedded with helical loops.
    Shang Y; Li Y; He X; Zhang L; Li Z; Li P; Shi E; Wu S; Cao A
    Nanoscale; 2013 Mar; 5(6):2403-10. PubMed ID: 23400109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Top-down process based on electrospinning, twisting, and heating for producing one-dimensional carbon nanotube assembly.
    Imaizumi S; Matsumoto H; Konosu Y; Tsuboi K; Minagawa M; Tanioka A; Koziol K; Windle A
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):469-75. PubMed ID: 21268647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.