These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15551087)

  • 1. Interlimb transfer of load compensation during rapid elbow joint movements.
    Bagesteiro LB; Sainburg RL
    Exp Brain Res; 2005 Feb; 161(2):155-65. PubMed ID: 15551087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nondominant arm advantages in load compensation during rapid elbow joint movements.
    Bagesteiro LB; Sainburg RL
    J Neurophysiol; 2003 Sep; 90(3):1503-13. PubMed ID: 12736237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlimb transfer of visuomotor rotations: independence of direction and final position information.
    Sainburg RL; Wang J
    Exp Brain Res; 2002 Aug; 145(4):437-47. PubMed ID: 12172655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions.
    Hatzitaki V; McKinley P
    Exp Brain Res; 2001 Sep; 140(1):34-45. PubMed ID: 11500796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlimb transfer of novel inertial dynamics is asymmetrical.
    Wang J; Sainburg RL
    J Neurophysiol; 2004 Jul; 92(1):349-60. PubMed ID: 15028745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in control of limb dynamics during dominant and nondominant arm reaching.
    Sainburg RL; Kalakanis D
    J Neurophysiol; 2000 May; 83(5):2661-75. PubMed ID: 10805666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Handedness: dominant arm advantages in control of limb dynamics.
    Bagesteiro LB; Sainburg RL
    J Neurophysiol; 2002 Nov; 88(5):2408-21. PubMed ID: 12424282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a dynamic-dominance hypothesis of handedness.
    Sainburg RL
    Exp Brain Res; 2002 Jan; 142(2):241-58. PubMed ID: 11807578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying interlimb transfer of visuomotor rotations.
    Wang J; Sainburg RL
    Exp Brain Res; 2003 Apr; 149(4):520-6. PubMed ID: 12677333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target-dependent differences between free and constrained arm movements in chronic hemiparesis.
    Beer RF; Dewald JP; Dawson ML; Rymer WZ
    Exp Brain Res; 2004 Jun; 156(4):458-70. PubMed ID: 14968276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions.
    Koshland GF; Hasan Z
    Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlimb transfer of visuomotor rotations depends on handedness.
    Wang J; Sainburg RL
    Exp Brain Res; 2006 Nov; 175(2):223-30. PubMed ID: 16733695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):499-508. PubMed ID: 8224076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlimb differences in coordination of unsupported reaching movements.
    Schaffer JE; Sainburg RL
    Neuroscience; 2017 May; 350():54-64. PubMed ID: 28344068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The symmetry of interlimb transfer depends on workspace locations.
    Wang J; Sainburg RL
    Exp Brain Res; 2006 Apr; 170(4):464-71. PubMed ID: 16328262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interlimb Responses to Perturbations of Bilateral Movements are Asymmetric.
    Schaffer JE; Sainburg RL
    J Mot Behav; 2021; 53(2):217-233. PubMed ID: 32375601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.
    Feldman AG; Adamovich SV; Levin MF
    Exp Brain Res; 1995; 103(3):440-50. PubMed ID: 7789450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.