BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15551345)

  • 1. Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats.
    Vasilakos K; Wilson RJ; Kimura N; Remmers JE
    J Neurobiol; 2005 Feb; 62(3):369-85. PubMed ID: 15551345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent lung oscillator response to CO2 after buccal oscillator inhibition in the adult frog.
    Leclère R; Straus C; Similowski T; Bodineau L; Fiamma MN
    Respir Physiol Neurobiol; 2012 Aug; 183(2):166-9. PubMed ID: 22772313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiration-related rhythmic activity in the rostral medulla of newborn rats.
    Onimaru H; Kumagawa Y; Homma I
    J Neurophysiol; 2006 Jul; 96(1):55-61. PubMed ID: 16495360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung and buccal ventilation in the frog: uncoupling coupled oscillators.
    Vasilakos K; Kimura N; Wilson RJ; Remmers JE
    Physiol Biochem Zool; 2006; 79(6):1010-8. PubMed ID: 17041867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogeny of vertebrate respiratory rhythm generators: the Oscillator Homology Hypothesis.
    Wilson RJ; Vasilakos K; Remmers JE
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):47-60. PubMed ID: 16750658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana).
    Hedrick MS; Chen AK; Jessop KL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):231-40. PubMed ID: 16023875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana.
    Winmill RE; Chen AK; Hedrick MS
    J Exp Biol; 2005 Jan; 208(Pt 2):213-22. PubMed ID: 15634841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation.
    Mellen NM; Janczewski WA; Bocchiaro CM; Feldman JL
    Neuron; 2003 Mar; 37(5):821-6. PubMed ID: 12628172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory rhythms generated in the lamprey rhombencephalon.
    Martel B; Guimond JC; Gariépy JF; Gravel J; Auclair F; Kolta A; Lund JP; Dubuc R
    Neuroscience; 2007 Aug; 148(1):279-93. PubMed ID: 17618060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla.
    Oku Y; Masumiya H; Okada Y
    J Physiol; 2007 Nov; 585(Pt 1):175-86. PubMed ID: 17884928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of essential rhombomeres for respiratory rhythm generation in bullfrog tadpoles using a binary search algorithm: Rhombomere 7 is essential for the gill rhythm and suppresses lung bursts before metamorphosis.
    Duchcherer M; Baghdadwala MI; Paramonov J; Wilson RJ
    Dev Neurobiol; 2013 Dec; 73(12):888-98. PubMed ID: 23843256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstem.
    Winmill RE; Hedrick MS
    J Neurobiol; 2003 Jun; 55(3):278-87. PubMed ID: 12717698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitation of respiratory rhythm by a mu-opioid agonist in newborn rat pons-medulla-spinal cord preparations.
    Tanabe A; Fujii T; Onimaru H
    Neurosci Lett; 2005 Feb; 375(1):19-22. PubMed ID: 15664115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that ventilatory rhythmogenesis in the frog involves two distinct neuronal oscillators.
    Wilson RJ; Vasilakos K; Harris MB; Straus C; Remmers JE
    J Physiol; 2002 Apr; 540(Pt 2):557-70. PubMed ID: 11956343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights in gill/buccal rhythm spiking activity and CO(2) sensitivity in pre- and postmetamorphic tadpoles (Pelophylax ridibundus).
    Quenet B; Straus C; Fiamma MN; Rivals I; Similowski T; Horcholle-Bossavit G
    Respir Physiol Neurobiol; 2014 Jan; 191():26-37. PubMed ID: 24200645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noradrenergic modulation of respiratory motor output during tadpole development: Role of alpha-adrenoceptors.
    Fournier S; Kinkead R
    J Exp Biol; 2006 Sep; 209(Pt 18):3685-94. PubMed ID: 16943508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticosterone promotes emergence of fictive air breathing in Xenopus laevis Daudin tadpole brainstems.
    Fournier S; Dubé PL; Kinkead R
    J Exp Biol; 2012 Apr; 215(Pt 7):1144-50. PubMed ID: 22399659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect opioid actions on inspiratory pre-Bötzinger complex neurons in newborn rat brainstem slices.
    Ballanyi K; Panaitescu B; Ruangkittisakul A
    Adv Exp Med Biol; 2010; 669():75-9. PubMed ID: 20217325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding studies of novel, non-mammalian enkephalins, structures predicted from frog and lungfish brain cDNA sequences.
    Bojnik E; Magyar A; Tóth G; Bajusz S; Borsodi A; Benyhe S
    Neuroscience; 2009 Jan; 158(2):867-74. PubMed ID: 18977279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Localization and function of the brainstem neuronal mechanism for respiratory control].
    Okada Y; Kuwana S; Oku Y
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2007 Nov; 27(5-6):207-14. PubMed ID: 18154042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.