BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15551542)

  • 1. The Monte Carlo modelling of in vivo x-ray fluorescence measurement of lead in tissue.
    Wallace JD
    Phys Med Biol; 1994 Oct; 39(10):1745-56. PubMed ID: 15551542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the specific purpose Monte Carlo code CEARXRF for the design and use of in vivo X-ray fluorescence analysis systems for lead in bone.
    Ao Q; Lee SH; Gardner RP
    Appl Radiat Isot; 1997; 48(10-12):1403-12. PubMed ID: 9463866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals.
    O'Meara JM; Chettle DR; McNeill FE; Prestwich WV; Svensson CE
    Phys Med Biol; 1998 Jun; 43(6):1413-28. PubMed ID: 9651014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary studies on combining the K and L XRF methods for in vivo bone lead measurement.
    Lee SH; Gardner RP; Todd AC
    Appl Radiat Isot; 2001 Jun; 54(6):893-904. PubMed ID: 11300402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of a backscattered X-ray fluorescence system.
    Al-Ghorabie FH
    J Xray Sci Technol; 2015; 23(1):57-64. PubMed ID: 25567407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of in vivo X-ray fluorescence analysis methods for bone lead by simulation with the Monte Carlo code CEARXRF.
    Ao Q; Lee SH; Gardner RP
    Appl Radiat Isot; 1997; 48(10-12):1413-23. PubMed ID: 9463867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo.
    Aro AC; Todd AC; Amarasiriwardena C; Hu H
    Phys Med Biol; 1994 Dec; 39(12):2263-71. PubMed ID: 15551552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo methods for the in vivo analysis of cisplatin using X-ray fluorescence.
    Hugtenburg RP; Turner JR; Mannering DM; Robinson BA
    Appl Radiat Isot; 1998; 49(5-6):673-6. PubMed ID: 9569576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normalisation with coherent scatter signal: improvements in the calibration procedure of the 57Co-based in vivo XRF bone-Pb measurement.
    O'Meara JM; Börjesson J; Chettle DR; Mattsson S
    Appl Radiat Isot; 2001 Feb; 54(2):319-25. PubMed ID: 11200895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification to the Monte Carlo N-particle code for simulating direct, in vivo measurement of stable lead in bone.
    Lodwick CJ; Spitz HB
    Health Phys; 2008 Jun; 94(6):519-26. PubMed ID: 18469585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.
    Al-Ghorabie FH; Natto SS; Al-Lyhiani SH
    Comput Biol Med; 2001 Mar; 31(2):73-83. PubMed ID: 11165216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compton scattering profile for in vivo XRF techniques.
    Tartari A; Baraldi C; Felsteiner J; Casnati E
    Phys Med Biol; 1991 May; 36(5):567-78. PubMed ID: 2068224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 4 x 500 mm2 cloverleaf detector system for in vivo bone lead measurement.
    Fleming DE; Mills CE
    Med Phys; 2007 Mar; 34(3):945-51. PubMed ID: 17441240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of in vivo K-shell X-ray fluorescence bone lead measurement and implications for radiation dosimetry.
    Ahmed N; Fleming DE; O'Meara JM
    Appl Radiat Isot; 2006 Sep; 64(9):1036-42. PubMed ID: 16766194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo investigations of distance-dependent effects on energy deposition in K-shell x-ray fluorescence bone lead measurement.
    Ahmed N; Fleming DE; O'Meara JM
    Phys Med Biol; 2004 Sep; 49(17):N267-76. PubMed ID: 15470932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo modelling of in vivo x-ray fluorescence of lead in the kidney.
    Todd AC; Chettle DR; Scott MC; Somervaille LJ
    Phys Med Biol; 1991 Apr; 36(4):439-48. PubMed ID: 2047395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of transmission properties of breast tissue equivalent materials under Compton scatter imaging setup.
    Yang K; Geng C; Li X; Liu B
    Phys Med; 2020 Apr; 72():32-38. PubMed ID: 32197220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty calculations for the measurement of in vivo bone lead by x-ray fluorescence.
    O'Meara JM; Fleming DE
    Phys Med Biol; 2009 Apr; 54(8):2449-61. PubMed ID: 19336842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone lead measurement using X-ray fluorescence.
    Wallace JD; Thomas BJ
    Australas Phys Eng Sci Med; 1993 Sep; 16(3):118-24. PubMed ID: 8240139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting in vivo measurement precision and accuracy of 109Cd K x-ray fluorescence measurements.
    McNeill FE; Stokes L; Chettle DR; Kaye WE
    Phys Med Biol; 1999 Sep; 44(9):2263-73. PubMed ID: 10495120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.