BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15551548)

  • 1. A general solution to charged particle beam flattening using an optimized dual-scattering-foil technique, with application to proton therapy beams.
    Grusell E; Montelius A; Brahme A; Rikner G; Russell K
    Phys Med Biol; 1994 Dec; 39(12):2201-16. PubMed ID: 15551548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time simulator for designing electron dual scattering foil systems.
    Carver RL; Hogstrom KR; Price MJ; LeBlanc JD; Pitcher GM
    J Appl Clin Med Phys; 2014 Nov; 15(6):4849. PubMed ID: 25493509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The angular and energy distribution of the primary electron beam.
    Keall PJ; Hoban PW
    Australas Phys Eng Sci Med; 1994 Sep; 17(3):116-23. PubMed ID: 7980200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon-beam subsource sensitivity to the initial electron-beam parameters.
    Fix MK; Keall PJ; Siebers JV
    Med Phys; 2005 Apr; 32(4):1164-75. PubMed ID: 15895600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a fast and feasible spectrum modeling technique for flattening filter free beams.
    Cho W; Bush K; Mok E; Xing L; Suh TS
    Med Phys; 2013 Apr; 40(4):041721. PubMed ID: 23556891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculating the angular standard deviation of electron beams using Fermi-Eyges theory.
    Keall PJ; Hoban PW
    Phys Med Biol; 1996 Aug; 41(8):1511-5. PubMed ID: 8858734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of scattering foil parameters on electron-beam Monte Carlo calculations.
    Bieda MR; Antolak JA; Hogstrom KR
    Med Phys; 2001 Dec; 28(12):2527-34. PubMed ID: 11797957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose calculations in proton beams: range straggling corrections and energy scaling.
    Russell KR; Grusell E; Montelius A
    Phys Med Biol; 1995 Jun; 40(6):1031-43. PubMed ID: 7659728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator.
    Tsechanski A; Krutman Y; Faermann S
    Phys Med Biol; 2005 Dec; 50(23):5629-39. PubMed ID: 16306657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.
    Svensson R; Larsson S; Gudowska I; Holmberg R; Brahme A
    Med Phys; 2007 Mar; 34(3):877-88. PubMed ID: 17441233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron beam treatment verification using measured and Monte Carlo predicted portal images.
    Jarry G; Verhaegen F
    Phys Med Biol; 2005 Nov; 50(21):4977-94. PubMed ID: 16237235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle selection for laser-accelerated proton therapy feasibility study.
    Fourkal E; Li JS; Ding M; Tajima T; Ma CM
    Med Phys; 2003 Jul; 30(7):1660-70. PubMed ID: 12906183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple scattering theory for total skin electron beam design.
    Antolak JA; Hogstrom KR
    Med Phys; 1998 Jun; 25(6):851-9. PubMed ID: 9650172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A beam source model for scanned proton beams.
    Kimstrand P; Traneus E; Ahnesjö A; Grusell E; Glimelius B; Tilly N
    Phys Med Biol; 2007 Jun; 52(11):3151-68. PubMed ID: 17505095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of stopping-power ratios using realistic clinical electron beams.
    Ding GX; Rogers DW; Mackie TR
    Med Phys; 1995 May; 22(5):489-501. PubMed ID: 7643785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of large-field electron beams to variations in a Monte Carlo accelerator model.
    Schreiber EC; Faddegon BA
    Phys Med Biol; 2005 Mar; 50(5):769-78. PubMed ID: 15798253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.