These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 15551549)
1. A fundamental study on hyper-thermal neutrons for neutron capture therapy. Sakurai Y; Kobayashi T; Kanda K Phys Med Biol; 1994 Dec; 39(12):2217-27. PubMed ID: 15551549 [TBL] [Abstract][Full Text] [Related]
2. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy. Sakurai Y; Kobayashi T Phys Med Biol; 2001 Jan; 46(1):121-33. PubMed ID: 11197667 [TBL] [Abstract][Full Text] [Related]
3. Combined use of FLUKA and MCNP-4A for the Monte Carlo simulation of the dosimetry of 10B neutron capture enhancement of fast neutron irradiations. Pignol JP; Cuendet P; Brassart N; Fares G; Colomb F; M'Bake Diop C; Sabattier R; Hachem A; Prevot G Med Phys; 1998 Jun; 25(6):885-91. PubMed ID: 9650176 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements. Enger SA; Munck af Rosenschöld P; Rezaei A; Lundqvist H Med Phys; 2006 Feb; 33(2):337-41. PubMed ID: 16532938 [TBL] [Abstract][Full Text] [Related]
5. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
6. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 meV proton-7Li reaction or from fission of 235U. Tanaka K; Kobayashi T; Sakurai Y; Nakagawa Y; Endo S; Hoshi M Phys Med Biol; 2001 Oct; 46(10):2681-95. PubMed ID: 11686282 [TBL] [Abstract][Full Text] [Related]
7. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy. Rivard MJ Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222 [TBL] [Abstract][Full Text] [Related]
8. The medical-irradiation characteristics for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor. Sakurai Y; Kobayashi T Med Phys; 2002 Oct; 29(10):2328-37. PubMed ID: 12408307 [TBL] [Abstract][Full Text] [Related]
9. Teatment planning figures of merit in thermal and epithermal boron neutron capture therapy of brain tumours. Wallace SA; Mathur JN; Allen BJ Phys Med Biol; 1994 May; 39(5):897-906. PubMed ID: 15552092 [TBL] [Abstract][Full Text] [Related]
10. Controllability of depth dose distribution for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor. Sakurai Y; Kobayashi T Med Phys; 2002 Oct; 29(10):2338-50. PubMed ID: 12408308 [TBL] [Abstract][Full Text] [Related]
11. Monte Carlo calculation of dose enhancement by neutron capture of 10B in fast neutron therapy. Pöller F; Sauerwein W; Rassow J Phys Med Biol; 1993 Mar; 38(3):397-410. PubMed ID: 8451283 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons. Marrale M; Basile S; Brai M; Longo A Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S186-9. PubMed ID: 19380235 [TBL] [Abstract][Full Text] [Related]
13. Studies on depth-dose-distribution controls by deuteration and void formation in boron neutron capture therapy. Sakurai Y Phys Med Biol; 2004 Aug; 49(15):3367-78. PubMed ID: 15379019 [TBL] [Abstract][Full Text] [Related]
14. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy. Tanaka K; Endo S; Hoshi M Appl Radiat Isot; 2010 Jan; 68(1):207-10. PubMed ID: 19726204 [TBL] [Abstract][Full Text] [Related]
15. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy. Takada K; Kumada H; Liem PH; Sakurai H; Sakae T Phys Med; 2016 Dec; 32(12):1846-1851. PubMed ID: 27889131 [TBL] [Abstract][Full Text] [Related]
16. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field. Kim MS; Lee BC; Hwang SY; Kim H; Jun BJ Phys Med Biol; 2007 May; 52(9):2553-66. PubMed ID: 17440252 [TBL] [Abstract][Full Text] [Related]
17. Calculation of dose components in head phantom for boron neutron capture therapy. da Silva AX; Crispim VR Cell Mol Biol (Noisy-le-grand); 2002 Nov; 48(7):813-7. PubMed ID: 12622057 [TBL] [Abstract][Full Text] [Related]
18. Simulations of silicon microdosimetry measurements in fast neutron therapy. Cornelius I; Rosenfeld A; Bradley P Australas Phys Eng Sci Med; 2002 Dec; 25(4):168-71. PubMed ID: 12859144 [TBL] [Abstract][Full Text] [Related]
19. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms. Koivunoro H; Seppälä T; Uusi-Simola J; Merimaa K; Kotiluoto P; Serén T; Kortesniemi M; Auterinen I; Savolainen S Phys Med Biol; 2010 Jun; 55(12):3515-33. PubMed ID: 20508317 [TBL] [Abstract][Full Text] [Related]
20. Capillary optics for neutron capture therapy. Peurrung AJ Med Phys; 1996 Apr; 23(4):487-94. PubMed ID: 9157259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]