BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15551558)

  • 21. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit.
    Leung TS; Powell S
    J Biomed Opt; 2010; 15(5):055007. PubMed ID: 21054089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2009 Aug; 17(16):13792-809. PubMed ID: 19654786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media.
    Sassaroli A
    Opt Lett; 2011 Jun; 36(11):2095-7. PubMed ID: 21633460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media.
    Reif R; A'Amar O; Bigio IJ
    Appl Opt; 2007 Oct; 46(29):7317-28. PubMed ID: 17932546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of simulated and experimental backscattered images of turbid media in linearly polarized light: estimation of the anisotropy factor.
    Falconet J; Sablong R; Perrin E; Jaillon F; Saint-Jalmes H
    Appl Opt; 2008 Nov; 47(31):5811-20. PubMed ID: 19122723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monte Carlo simulation of optical coherence tomography for turbid media with arbitrary spatial distributions.
    Malektaji S; Lima IT; Sherif SS
    J Biomed Opt; 2014 Apr; 19(4):046001. PubMed ID: 24695845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photon diffusion near the point-of-entry in anisotropically scattering turbid media.
    Vitkin E; Turzhitsky V; Qiu L; Guo L; Itzkan I; Hanlon EB; Perelman LT
    Nat Commun; 2011 Dec; 2():587. PubMed ID: 22158442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-scattering optical tomography: simultaneous reconstruction of scattering and absorption.
    Florescu L; Markel VA; Schotland JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016602. PubMed ID: 20365486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions.
    Tarvainen T; Vauhkonen M; Kolehmainen V; Arridge SR; Kaipio JP
    Phys Med Biol; 2005 Oct; 50(20):4913-30. PubMed ID: 16204880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced tagging of light utilizing acoustic radiation force with speckle pattern analysis.
    Vakili A; Hollmann JL; Holt RG; DiMarzio CA
    J Biomed Opt; 2017 Oct; 22(10):1-10. PubMed ID: 28986967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of anisotropy coefficient of swine pancreas, liver and muscle at 1064 nm based on goniometric technique.
    Saccomandi P; Vogel V; Bazrafshan B; Maurer J; Schena E; Vogl TJ; Silvestri S; Mäntele W
    J Biophotonics; 2015 May; 8(5):422-8. PubMed ID: 24995557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths.
    Fawzi YS; Youssef AB; el-Batanony MH; Kadah YM
    Appl Opt; 2003 Nov; 42(31):6398-411. PubMed ID: 14649284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection of voxel size and photon number in voxel-based Monte Carlo method: criteria and applications.
    Li D; Chen B; Ran WY; Wang GX; Wu WJ
    J Biomed Opt; 2015; 20(9):095014. PubMed ID: 26417866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport- and diffusion-based optical tomography in small domains: a comparative study.
    Ren K; Bal G; Hielscher AH
    Appl Opt; 2007 Sep; 46(27):6669-79. PubMed ID: 17882287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diffuse photon propagation in multilayered geometries.
    Sikora J; Zacharopoulos A; Douiri A; Schweiger M; Horesh L; Arridge SR; Ripoll J
    Phys Med Biol; 2006 Feb; 51(3):497-516. PubMed ID: 16424578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Method to determine the optical properties of turbid media.
    Prerana ; Shenoy MR; Pal BP
    Appl Opt; 2008 Jun; 47(17):3216-20. PubMed ID: 18545296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.