These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 15551581)

  • 1. Determination of the relative linear collision stopping power and linear scattering power of electron bolus material.
    Low DA; Hogstrom KR
    Phys Med Biol; 1994 Jun; 39(6):1063-8. PubMed ID: 15551581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is wax equivalent to tissue in electron conformal therapy planning? A Monte Carlo study of material approximation introduced dose difference.
    Zhang RR; Feygelman V; Harris ER; Rao N; Moros EG; Zhang GG
    J Appl Clin Med Phys; 2013 Jan; 14(1):3991. PubMed ID: 23318384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An accurate energy-range relationship for high-energy electron beams in arbitrary materials.
    Sorcini BB; Brahme A
    Phys Med Biol; 1994 May; 39(5):795-811. PubMed ID: 15552086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of the application of lateral buildup ratio on the 4-MeV electron beam.
    Chow JC; Newman S
    J Appl Clin Med Phys; 2006; 7(1):35-41. PubMed ID: 16518315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of an extra-focal electron source to model collimator-scattered electrons using the pencil-beam redefinition algorithm.
    Boyd RA; Hogstrom KR; White RA; Antolak JA
    Med Phys; 2002 Nov; 29(11):2571-83. PubMed ID: 12462724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface perturbation effects in high-energy electron beams.
    Verhaegen F
    Phys Med Biol; 2003 Mar; 48(6):687-705. PubMed ID: 12699189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photon beam quality specification by narrow-beam transmission measurements.
    Nyström H; Karlsson M
    Phys Med Biol; 1994 Aug; 39(8):1231-45. PubMed ID: 15551564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the electron pencil beam redefinition algorithm to electron arc therapy.
    Chi PC; Hogstrom KR; Starkschall G; Boyd RA; Tucker SL; Antolak JA
    Med Phys; 2006 Jul; 33(7):2369-83. PubMed ID: 16898439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of the Burns equation for stopping-power ratio as a function of depth and R50.
    Rogers DW
    Med Phys; 2004 Nov; 31(11):2961-3. PubMed ID: 15587647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams.
    Björk P; Knöös T; Nilsson P
    Phys Med Biol; 2004 Oct; 49(19):4493-506. PubMed ID: 15552413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of stopping-power ratios using realistic clinical electron beams.
    Ding GX; Rogers DW; Mackie TR
    Med Phys; 1995 May; 22(5):489-501. PubMed ID: 7643785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy loss of 70 MeV protons in tissue-substitute materials.
    Hiraoka T; Kawashima K; Hoshino K; Bichsel H
    Phys Med Biol; 1994 Jun; 39(6):983-91. PubMed ID: 15551574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Monte Carlo simulation of electron transport in radiation dosimetry.
    Rogers DW
    Int J Rad Appl Instrum A; 1991; 42(10):965-74. PubMed ID: 1661717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.
    Andreo P
    Phys Med Biol; 2015 Jan; 60(1):309-37. PubMed ID: 25503312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monochromatic beam characterization for Auger electron dosimetry and radiotherapy.
    Dugas JP; Oves SD; Sajo E; Matthews KL; Ham K; Hogstrom KR
    Eur J Radiol; 2008 Dec; 68(3 Suppl):S137-41. PubMed ID: 18599232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25.
    Gerbi BJ; Antolak JA; Deibel FC; Followill DS; Herman MG; Higgins PD; Huq MS; Mihailidis DN; Yorke ED; Hogstrom KR; Khan FM
    Med Phys; 2009 Jul; 36(7):3239-79. PubMed ID: 19673223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculating percent depth dose with the electron pencil-beam redefinition algorithm.
    Price MJ; Hogstrom KR; Antolak JA; White RA; Bloch CD; Boyd RA
    J Appl Clin Med Phys; 2007 Apr; 8(2):61-75. PubMed ID: 17592466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattered radiation from applicators in clinical electron beams.
    van Battum LJ; van der Zee W; Huizenga H
    Phys Med Biol; 2003 Aug; 48(15):2493-507. PubMed ID: 12953911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiological properties of a wax-gypsum compensator material.
    du Plessis FC; Willemse CA
    Med Phys; 2005 May; 32(5):1246-55. PubMed ID: 15984675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.