These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 15551755)
1. 2-methoxyestradiol enhances p53 protein transduction therapy-associated inhibition of the proliferation of oral cancer cells through the suppression of NFkappaB activity. Takata H; Tomizawa K; Matsushita M; Matsui H Acta Med Okayama; 2004 Aug; 58(4):181-7. PubMed ID: 15551755 [TBL] [Abstract][Full Text] [Related]
2. Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Takenobu T; Tomizawa K; Matsushita M; Li ST; Moriwaki A; Lu YF; Matsui H Mol Cancer Ther; 2002 Oct; 1(12):1043-9. PubMed ID: 12481427 [TBL] [Abstract][Full Text] [Related]
3. p53 gene expression and 2-methoxyestradiol treatment differentially induce nuclear factor kappa B activation in human lung cancer cells with different p53 phenotypes. Rath PC; Mukhopadhyay T DNA Cell Biol; 2009 Dec; 28(12):615-23. PubMed ID: 19715480 [TBL] [Abstract][Full Text] [Related]
4. Roles of p38- and c-jun NH2-terminal kinase-mediated pathways in 2-methoxyestradiol-induced p53 induction and apoptosis. Shimada K; Nakamura M; Ishida E; Kishi M; Konishi N Carcinogenesis; 2003 Jun; 24(6):1067-75. PubMed ID: 12807754 [TBL] [Abstract][Full Text] [Related]
5. 2-Methoxyestradiol interferes with NF kappa B transcriptional activity in primitive neuroectodermal brain tumors: implications for management. Kumar AP; Garcia GE; Orsborn J; Levin VA; Slaga TJ Carcinogenesis; 2003 Feb; 24(2):209-16. PubMed ID: 12584169 [TBL] [Abstract][Full Text] [Related]
6. Effects of estrogen metabolite 2-methoxyestradiol on tumor suppressor protein p53 and proliferation of breast cancer cells. Siebert AE; Sanchez AL; Dinda S; Moudgil VK Syst Biol Reprod Med; 2011 Dec; 57(6):279-87. PubMed ID: 22077725 [TBL] [Abstract][Full Text] [Related]
7. A protein transduction method using oligo-arginine (3R) for the delivery of transcription factors into cell nuclei. Hitsuda T; Michiue H; Kitamatsu M; Fujimura A; Wang F; Yamamoto T; Han XJ; Tazawa H; Uneda A; Ohmori I; Nishiki T; Tomizawa K; Matsui H Biomaterials; 2012 Jun; 33(18):4665-72. PubMed ID: 22465335 [TBL] [Abstract][Full Text] [Related]
8. p53 protein transduction therapy: successful targeting and inhibition of the growth of the bladder cancer cells. Inoue M; Tomizawa K; Matsushita M; Lu YF; Yokoyama T; Yanai H; Takashima A; Kumon H; Matsui H Eur Urol; 2006 Jan; 49(1):161-8. PubMed ID: 16310931 [TBL] [Abstract][Full Text] [Related]
9. [2-methoxyestradiol induces p53 independent apoptosis in pancratic carcinoma and inhibits growth of lung metastasis]. Schumacher G; Kataoka M; Roth JA; Mukhopadhyay T Langenbecks Arch Chir Suppl Kongressbd; 1998; 115(Suppl I):49-52. PubMed ID: 14518211 [TBL] [Abstract][Full Text] [Related]
10. Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kappaB activation in gastric cancer cells. Jiang XH; Wong BC; Lin MC; Zhu GH; Kung HF; Jiang SH; Yang D; Lam SK Oncogene; 2001 Nov; 20(55):8009-18. PubMed ID: 11753684 [TBL] [Abstract][Full Text] [Related]
11. Cepharanthin-enhanced radiosensitivity through the inhibition of radiation-induced nuclear factor-kappaB activity in human oral squamous cell carcinoma cells. Tamatani T; Azuma M; Motegi K; Takamaru N; Kawashima Y; Bando T Int J Oncol; 2007 Oct; 31(4):761-8. PubMed ID: 17786306 [TBL] [Abstract][Full Text] [Related]
12. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544 [TBL] [Abstract][Full Text] [Related]
13. The dietary phytochemical 3,3'-diindolylmethane induces G2/M arrest and apoptosis in oral squamous cell carcinoma by modulating Akt-NF-κB, MAPK, and p53 signaling. Weng JR; Bai LY; Chiu CF; Wang YC; Tsai MH Chem Biol Interact; 2012 Feb; 195(3):224-30. PubMed ID: 22290291 [TBL] [Abstract][Full Text] [Related]
14. Regulation of expression of BIK proapoptotic protein in human breast cancer cells: p53-dependent induction of BIK mRNA by fulvestrant and proteasomal degradation of BIK protein. Hur J; Bell DW; Dean KL; Coser KR; Hilario PC; Okimoto RA; Tobey EM; Smith SL; Isselbacher KJ; Shioda T Cancer Res; 2006 Oct; 66(20):10153-61. PubMed ID: 17047080 [TBL] [Abstract][Full Text] [Related]
15. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Hastak K; Gupta S; Ahmad N; Agarwal MK; Agarwal ML; Mukhtar H Oncogene; 2003 Jul; 22(31):4851-9. PubMed ID: 12894226 [TBL] [Abstract][Full Text] [Related]
16. Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors. Dreyfus DH; Nagasawa M; Gelfand EW; Ghoda LY BMC Immunol; 2005 Jun; 6():12. PubMed ID: 15969767 [TBL] [Abstract][Full Text] [Related]
17. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Yang L; Zhou Y; Li Y; Zhou J; Wu Y; Cui Y; Yang G; Hong Y Cancer Lett; 2015 Feb; 357(2):520-6. PubMed ID: 25499080 [TBL] [Abstract][Full Text] [Related]
18. Superinduction of wild-type p53 protein after 2-methoxyestradiol treatment of Ad5p53-transduced cells induces tumor cell apoptosis. Mukhopadhyay T; Roth JA Oncogene; 1998 Jul; 17(2):241-6. PubMed ID: 9674709 [TBL] [Abstract][Full Text] [Related]
19. Induction of MDM2-P2 transcripts correlates with stabilized wild-type p53 in betel- and tobacco-related human oral cancer. Ralhan R; Sandhya A; Meera M; Bohdan W; Nootan SK Am J Pathol; 2000 Aug; 157(2):587-96. PubMed ID: 10934161 [TBL] [Abstract][Full Text] [Related]
20. Ubiquitination-resistant p53 protein transduction therapy facilitates anti-cancer effect on the growth of human malignant glioma cells. Michiue H; Tomizawa K; Matsushita M; Tamiya T; Lu YF; Ichikawa T; Date I; Matsui H FEBS Lett; 2005 Jul; 579(18):3965-9. PubMed ID: 15996664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]