BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15552092)

  • 1. Teatment planning figures of merit in thermal and epithermal boron neutron capture therapy of brain tumours.
    Wallace SA; Mathur JN; Allen BJ
    Phys Med Biol; 1994 May; 39(5):897-906. PubMed ID: 15552092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron neutron capture therapy (BNCT) for malignant melanoma with special reference to absorbed doses to the normal skin and tumor.
    Fukuda H; Hiratsuka J; Kobayashi T; Sakurai Y; Yoshino K; Karashima H; Turu K; Araki K; Mishima Y; Ichihashi M
    Australas Phys Eng Sci Med; 2003 Sep; 26(3):97-103. PubMed ID: 14626847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comments on 'A microdosimetric study of the dose enhancement in a fast neutron beam due to boron capture'.
    Green S
    Phys Med Biol; 1994 May; 39(5):923-4. PubMed ID: 15552095
    [No Abstract]   [Full Text] [Related]  

  • 4. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.
    Zamenhof RG; Clement SD; Harling OK; Brenner JF; Wazer DE; Madoc-Jones H; Yanch JC
    Basic Life Sci; 1990; 54():283-305. PubMed ID: 2268244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of heavy water on boron requirements for neutron capture therapy.
    Wallace SA; Mathur JN; Allen BJ
    Med Phys; 1995 May; 22(5):585-90. PubMed ID: 7643797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron self-shielding effects on dose delivery of neutron capture therapy using epithermal beam and boronophenylalanine.
    Ye SJ
    Med Phys; 1999 Nov; 26(11):2488-93. PubMed ID: 10587238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo calculations of epithermal boron neutron capture therapy with heavy water.
    Wallace SA; Allen BJ; Mathur JN
    Phys Med Biol; 1995 Oct; 40(10):1599-608. PubMed ID: 8532742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data.
    Zamenhof R; Redmond E; Solares G; Katz D; Riley K; Kiger S; Harling O
    Int J Radiat Oncol Biol Phys; 1996 May; 35(2):383-97. PubMed ID: 8635948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams.
    Zamenhof RG; Murray BW; Brownell GL; Wellum GR; Tolpin EI
    Med Phys; 1975; 2(2):47-60. PubMed ID: 1186617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.
    Ye SJ
    Phys Med Biol; 1999 Feb; 44(2):447-61. PubMed ID: 10070794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory.
    Chadha M; Capala J; Coderre JA; Elowitz EH; Iwai J; Joel DD; Liu HB; Wielopolski L; Chanana AD
    Int J Radiat Oncol Biol Phys; 1998 Mar; 40(4):829-34. PubMed ID: 9531367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational assessment of improved cell-kill by gadolinium-supplemented boron neutron capture therapy.
    Culbertson CN; Jevremovic T
    Phys Med Biol; 2003 Dec; 48(23):3943-59. PubMed ID: 14703168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Present status of boron neutron capture therapy.
    Carlsson J; Sjöberg S; Larsson BS
    Acta Oncol; 1992; 31(8):803-13. PubMed ID: 1290630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose homogeneity in boron neutron capture therapy using an epithermal neutron beam.
    Konijnenberg MW; Dewit LG; Mijnheer BJ; Raaijmakers CP; Watkins PR
    Radiat Res; 1995 Jun; 142(3):327-39. PubMed ID: 7761583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of the required dimensions for standard sized phantoms in boron neutron capture therapy dosimetry.
    Koivunoro H; Auterinen I; Kosunen A; Kotiluoto P; Seppälä T; Savolainen S
    Phys Med Biol; 2003 Nov; 48(21):N291-300. PubMed ID: 14653569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo optimisation of a BNCT facility for treating brain gliomas at the TAPIRO reactor.
    Nava E; Burn KW; Casalini L; Petrovich C; Rosi G; Sarotto M; Tinti R
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):475-81. PubMed ID: 16604681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central nervous system tolerance to boron neutron capture therapy with p-boronophenylalanine.
    Morris GM; Coderre JA; Micca PL; Fisher CD; Capala J; Hopewell JW
    Br J Cancer; 1997; 76(12):1623-9. PubMed ID: 9413952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary treatment planning and dosimetry for a clinical trial of neutron capture therapy using a fission converter epithermal neutron beam.
    Kiger WS; Lu XQ; Harling OK; Riley KJ; Binns PJ; Kaplan J; Patel H; Zamenhof RG; Shibata Y; Kaplan ID; Busse PM; Palmer MR
    Appl Radiat Isot; 2004 Nov; 61(5):1075-81. PubMed ID: 15308195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.
    Wangerin K; Culbertson CN; Jevremovic T
    Health Phys; 2005 Aug; 89(2):135-44. PubMed ID: 16010124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron capture imaging of 10B in tissue specimens.
    Ceberg CP; Salford LG; Brun A; Hemler RJ; Persson BR
    Radiother Oncol; 1993 Feb; 26(2):139-46. PubMed ID: 8465014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.