These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15552104)

  • 1. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.
    Pogue BW; Patterson MS
    Phys Med Biol; 1994 Jul; 39(7):1157-80. PubMed ID: 15552104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms.
    Pogue BW; Paulsen KD; Abele C; Kaufman H
    J Biomed Opt; 2000 Apr; 5(2):185-93. PubMed ID: 10938782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device.
    Gurfinkel M; Pan T; Sevick-Muraca EM
    J Biomed Opt; 2004; 9(6):1336-46. PubMed ID: 15568956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of light propagation models to determine the optical properties of tissue from interstitial frequency domain fluence measurements.
    Xu H; Farrell TJ; Patterson MS
    J Biomed Opt; 2006; 11(4):041104. PubMed ID: 16965132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques.
    Madsen SJ; Wyss P; Svaasand LO; Haskell RC; Tadir Y; Tromberg BJ
    Phys Med Biol; 1994 Aug; 39(8):1191-202. PubMed ID: 15551561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.
    Kienle A; Patterson MS
    Phys Med Biol; 1997 Sep; 42(9):1801-19. PubMed ID: 9308085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental determination of photon propagation in highly absorbing and scattering media.
    Ripoll J; Yessayan D; Zacharakis G; Ntziachristos V
    J Opt Soc Am A Opt Image Sci Vis; 2005 Mar; 22(3):546-51. PubMed ID: 15770993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial assessment of a simple system for frequency domain diffuse optical tomography.
    Pogue BW; Patterson MS; Jiang H; Paulsen KD
    Phys Med Biol; 1995 Oct; 40(10):1709-29. PubMed ID: 8532750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements.
    Madsen SJ; Wilson BC; Patterson MS; Park YD; Jacques SL; Hefetz Y
    Appl Opt; 1992 Jun; 31(18):3509-17. PubMed ID: 20725319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency domain photon migration in the delta- P1 approximation: analysis of ballistic, transport, and diffuse regimes.
    You JS; Hayakawa CK; Venugopalan V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021903. PubMed ID: 16196600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modelling error approach for the estimation of optical absorption in the presence of anisotropies.
    Heino J; Somersalo E
    Phys Med Biol; 2004 Oct; 49(20):4785-98. PubMed ID: 15566175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach.
    Dehghani H; Brooksby B; Vishwanath K; Pogue BW; Paulsen KD
    Phys Med Biol; 2003 Aug; 48(16):2713-27. PubMed ID: 12974584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue.
    Duadi H; Fixler D
    J Biomed Opt; 2015 May; 20(5):56010. PubMed ID: 26016448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green functions for diffuse light in a medium comprising two turbid half-spaces.
    Shendeleva ML
    Appl Opt; 2004 Oct; 43(28):5334-42. PubMed ID: 15495424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectra from 2.5-15 microm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin.
    Viator JA; Choi B; Peavy GM; Kimel S; Nelson JS
    Phys Med Biol; 2003 Jan; 48(2):N15-24. PubMed ID: 12587910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes.
    Hull EL; Nichols MG; Foster TH
    Phys Med Biol; 1998 Nov; 43(11):3381-404. PubMed ID: 9832022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy.
    Tseng SH; Grant A; Durkin AJ
    J Biomed Opt; 2008; 13(1):014016. PubMed ID: 18315374
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.