These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1555258)

  • 21. Epidemiological study on chronotype among preschool children in Japan: Prevalence, sleep-wake patterns, and associated factors.
    Doi Y; Ishihara K; Uchiyama M
    Chronobiol Int; 2016; 33(10):1340-1350. PubMed ID: 27538100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Properties of human sleep-wake cycles: parameters of internally synchronized free-running rhythms.
    Wever RA
    Sleep; 1984; 7(1):27-51. PubMed ID: 6718923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A circadian rhythm in heart rate variability contributes to the increased cardiac sympathovagal response to awakening in the morning.
    Boudreau P; Yeh WH; Dumont GA; Boivin DB
    Chronobiol Int; 2012 Jul; 29(6):757-68. PubMed ID: 22734576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dependence of onset and duration of sleep on th circadian rhythm of rectal temperature.
    Zulley J; Wever R; Aschoff J
    Pflugers Arch; 1981 Oct; 391(4):314-8. PubMed ID: 7312563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human sleep-wake cycles in the high Arctic: effects of unusual photoperiodicity in a natural setting.
    Steel GD; Callaway M; Suedfeld P; Palinkas L
    Biol Rhythm Res; 1995 Nov; 26(5):582-92. PubMed ID: 11542647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents.
    Hubbard J; Ruppert E; Calvel L; Robin-Choteau L; Gropp CM; Allemann C; Reibel S; Sage-Ciocca D; Bourgin P
    Sleep; 2015 Jun; 38(6):979-88. PubMed ID: 25409107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered sleep-wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice.
    Huang ZL; Mochizuki T; Qu WM; Hong ZY; Watanabe T; Urade Y; Hayaishi O
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4687-92. PubMed ID: 16537376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-of-day mediates the influences of extended wake and sleep restriction on simulated driving.
    Matthews RW; Ferguson SA; Zhou X; Sargent C; Darwent D; Kennaway DJ; Roach GD
    Chronobiol Int; 2012 Jun; 29(5):572-9. PubMed ID: 22621353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crepuscular rhythms of EEG sleep-wake in a hystricomorph rodent, Octodon degus.
    Kas MJ; Edgar DM
    J Biol Rhythms; 1998 Feb; 13(1):9-17. PubMed ID: 9486839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Meal timing in humans during isolation without time cues.
    Aschoff J; von Goetz C; Wildgruber C; Wever RA
    J Biol Rhythms; 1986; 1(2):151-62. PubMed ID: 2979581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators.
    Dijk DJ; von Schantz M
    J Biol Rhythms; 2005 Aug; 20(4):279-90. PubMed ID: 16077148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Statistical analysis of the parameters defining the cortical visual evoked potentials in the phases of the sleep-wake cycle].
    Sigüenza JA; de Andrés I; Ibarz JM; Reinoso-Suarez F
    Rev Esp Fisiol; 1983 Sep; 39(3):253-8. PubMed ID: 6658141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationships among wake episode lengths, contiguous sleep episode lengths, and electroencephalographic delta waves in rats with suprachiasmatic nuclei lesions.
    Mistlberger RE; Bergmann BM; Rechtschaffen A
    Sleep; 1987 Feb; 10(1):12-24. PubMed ID: 3563245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultradian components of the sleep-wake cycle in babies.
    Menna-Barreto L; Benedito-Silva AA; Marques N; de Andrade MM; Louzada F
    Chronobiol Int; 1993 Apr; 10(2):103-8. PubMed ID: 8500186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sleep-wake disturbances in an animal model of chronic cholinergic insufficiency.
    Szymusiak R; McGinty D; Fairchild MD; Jenden DJ
    Brain Res; 1993 Nov; 629(1):141-5. PubMed ID: 7904530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compensatory sleep responses to wakefulness induced by the dopamine autoreceptor antagonist (-)DS121.
    Olive MF; Seidel WF; Edgar DM
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1073-83. PubMed ID: 9618410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in Sleep Duration and Sleep Timing Associated with Retirement Transitions.
    Hagen EW; Barnet JH; Hale L; Peppard PE
    Sleep; 2016 Mar; 39(3):665-73. PubMed ID: 26564125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disruptions in sleep-wake cycles in community-dwelling cancer patients receiving palliative care and their correlates.
    Bernatchez MS; Savard J; Ivers H
    Chronobiol Int; 2018 Jan; 35(1):49-62. PubMed ID: 29144172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-related changes in the sleep-wake cycle of rats infected with Trypanosoma brucei brucei.
    Montmayeur A; Buguet A
    Neurosci Lett; 1994 Feb; 168(1-2):172-4. PubMed ID: 7913215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.