These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15552663)

  • 1. Anisotropy of light propagation in biological tissue.
    Kienle A; Forster FK; Hibst R
    Opt Lett; 2004 Nov; 29(22):2617-9. PubMed ID: 15552663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the optical properties of anisotropic biological media using an isotropic diffusion model.
    Kienle A; Wetzel C; Bassi A; Comelli D; Taroni P; Pifferi A
    J Biomed Opt; 2007; 12(1):014026. PubMed ID: 17343501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light propagation in dentin: influence of microstructure on anisotropy.
    Kienle A; Forster FK; Diebolder R; Hibst R
    Phys Med Biol; 2003 Jan; 48(2):N7-14. PubMed ID: 12587909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography.
    Sainter AW; King TA; Dickinson MR
    J Biomed Opt; 2004; 9(1):193-9. PubMed ID: 14715073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical solution for light propagation in a two-layer tissue structure with a tilted interface for breast imaging.
    Das M; Xu C; Zhu Q
    Appl Opt; 2006 Jul; 45(20):5027-36. PubMed ID: 16807614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating optical properties in layered tissues by use of the Born approximation of the radiative transport equation.
    Kim AD; Hayakawa C; Venugopalan V
    Opt Lett; 2006 Apr; 31(8):1088-90. PubMed ID: 16625912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation on the use of data-driven scattering profiles in Monte Carlo simulations of ultraviolet light propagation in skin tissues.
    Baranoski GV; Krishnaswamy A; Kimmel B
    Phys Med Biol; 2004 Oct; 49(20):4799-809. PubMed ID: 15566176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation model for light propagation through diffusive layered media.
    Martelli F; Del Bianco S; Zaccanti G
    Phys Med Biol; 2005 May; 50(9):2159-66. PubMed ID: 15843743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninterferometric characterization of partially coherent scalar wave fields and application to scattered light.
    Aruldoss CK; Dragomir NM; Roberts A
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3189-97. PubMed ID: 17912309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial coherence in strongly scattering media.
    Pierrat R; Greffet JJ; Carminati R; Elaloufi R
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2329-37. PubMed ID: 16302386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized optical theorem for scattering in inhomogeneous media.
    Dacol DK; Roy DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036609. PubMed ID: 16241594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light propagation in multilayered scattering media beyond the diffusive regime.
    Elaloufi R; Arridge S; Pierrat R; Carminati R
    Appl Opt; 2007 May; 46(13):2528-39. PubMed ID: 17429467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Sep; 51(17):N313-22. PubMed ID: 16912370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractal mechanisms of light scattering in biological tissue and cells.
    Xu M; Alfano RR
    Opt Lett; 2005 Nov; 30(22):3051-3. PubMed ID: 16315718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry.
    Chen N
    Appl Opt; 2007 Apr; 46(10):1597-603. PubMed ID: 17356601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallelized Monte Carlo software to efficiently simulate the light propagation in arbitrarily shaped objects and aligned scattering media.
    Zoller CJ; Hohmann A; Foschum F; Geiger S; Geiger M; Ertl TP; Kienle A
    J Biomed Opt; 2018 Jun; 23(6):1-12. PubMed ID: 29935015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on 'the use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics'.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Nov; 51(22):L39-41. PubMed ID: 17068360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy of light propagation in human skin.
    Nickell S; Hermann M; Essenpreis M; Farrell TJ; Krämer U; Patterson MS
    Phys Med Biol; 2000 Oct; 45(10):2873-86. PubMed ID: 11049177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light scattering regimes along the optical axis in turbid media.
    Campbell SD; O'connell AK; Menon S; Su Q; Grobe R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061909. PubMed ID: 17280098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.