BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15553476)

  • 1. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.
    Ekama GA; Marais P
    Water Sci Technol; 2004; 50(7):195-204. PubMed ID: 15553476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model.
    Ekama GA; Marais P
    Water Res; 2004 Feb; 38(3):495-506. PubMed ID: 14723917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems.
    Patziger M; Kainz H; Hunze M; Józsa J
    Water Res; 2012 May; 46(7):2415-24. PubMed ID: 22365174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of sludge properties and hydraulic loading on the performance of secondary settling tanks--full-scale operational results.
    Vestner RJ; Günthert FW
    Water Sci Technol; 2004; 50(7):179-86. PubMed ID: 15553474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of settling tank capacity using a new type of tube settler.
    Fujisaki K
    Water Sci Technol; 2010; 62(6):1213-20. PubMed ID: 20861533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics in maximal settling capacity in an activated sludge treatment plant with highly loaded secondary settlers.
    Wilén BM; Lumley D; Nordqvist A
    Water Sci Technol; 2004; 50(7):187-94. PubMed ID: 15553475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysing sludge balance in activated sludge systems with a novel mass transport model.
    Patziger M; Kainz H; Hunze M; Józsa J
    Water Sci Technol; 2008; 57(9):1413-9. PubMed ID: 18496007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing the total discharge from a large WWTP by separate treatment of primary effluent overflow.
    Hanner N; Mattsson A; Gruvberger C; Nyberg U; Aspegren H; Fredriksson O; Nordqvist A; Andersson B
    Water Sci Technol; 2004; 50(7):157-62. PubMed ID: 15553471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling and simulation of the steady-state of secondary settlers in wastewater treatment plants.
    Queinnec I; Dochain D
    Water Sci Technol; 2001; 43(7):39-46. PubMed ID: 11385873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A consistent modelling methodology for secondary settling tanks: a reliable numerical method.
    Bürger R; Diehl S; Farås S; Nopens I; Torfs E
    Water Sci Technol; 2013; 68(1):192-208. PubMed ID: 23823556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic one-dimensional modeling of secondary settling tanks and design impacts of sizing decisions.
    Li B; Stenstrom MK
    Water Res; 2014 Mar; 50():160-70. PubMed ID: 24374127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation principles suspended solids distribution modelling to support ATS introduction on a recirculating WWTP.
    Gernaey KV; Nielsen MK; Thornberg D; Höök B; Munk-Nielsen T; Ingildsen P; Jørgensen SB
    Water Sci Technol; 2004; 50(11):179-88. PubMed ID: 15685994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of operational conditions on the performance of a mesh filter activated sludge process.
    Fuchs W; Resch C; Kernstock M; Mayer M; Schoeberl P; Braun R
    Water Res; 2005 Mar; 39(5):803-10. PubMed ID: 15743625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-effective upgrading of a biological wastewater treatment plant by using lamella separators with bypass operation.
    Jardin N; Rath L; Schönfeld A; Grünebaum T
    Water Sci Technol; 2008; 57(10):1619-25. PubMed ID: 18520020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marine-based waste stabilisation ponds: an evaluation of the hydraulic viability.
    Burrows R; Ali KH; Tickell RG; Hedges TS; Pearson HW; Mara DD
    Water Sci Technol; 2001; 43(11):283-90. PubMed ID: 11443974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vortex concentrator for suspended solids treatment.
    Lee J; Bang K; Choi J; Ketchum LH; Cho Y
    Water Sci Technol; 2003; 47(7-8):335-41. PubMed ID: 12793698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The solids-flux theory--confirmation and extension by using partial differential equations.
    Diehl S
    Water Res; 2008 Dec; 42(20):4976-88. PubMed ID: 18926553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.
    Luo L; Li WM; Deng YS; Wang T
    J Environ Sci (China); 2005; 17(5):808-12. PubMed ID: 16313008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new one-dimensional clarifier model--verification using full-scale experimental data.
    De Clercq J; Devisscher M; Boonen I; Vanrolleghem PA; Defrancq J
    Water Sci Technol; 2003; 47(12):105-12. PubMed ID: 12926676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taking wind into account in the design of waste stabilisation ponds.
    Badrot-Nico F; Guinot V; Brissaud F
    Water Sci Technol; 2010; 61(4):937-44. PubMed ID: 20182072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.