BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 15553510)

  • 1. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of a focusing transducer and miniature hydrophone as well as acoustic power measurement based on free-field reciprocity in a spherically focused wave field.
    Shou W; Duan S; He P; Xia R; Qian D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Mar; 53(3):564-70. PubMed ID: 16555764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration of ultrasonic hydrophone probes up to 100 MHz using time gating frequency analysis and finite amplitude waves.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):247-54. PubMed ID: 12782255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings.
    Lu JY; Cheng J; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1796-812. PubMed ID: 17036788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
    Cooling MP; Humphrey VF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):84-93. PubMed ID: 18334316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields.
    Huttunen T; Kaipio JP; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1486-500. PubMed ID: 14682632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophone Spatial Averaging Artifacts for ARFI Beams from Array Transducers.
    Wear K; Shah A; Ivory AM; Baker C
    IEEE Int Ultrason Symp; 2020; NA():1-4. PubMed ID: 35733623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of calibration techniques for ultrasonic hydrophone probes in the frequency range from 1 to 100 MHz.
    Umchid S; Gopinath R; Srinivasan K; Lewin PA; Daryoush AS; Bansal L; El-Sherif M
    Ultrasonics; 2009 Mar; 49(3):306-11. PubMed ID: 19110289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming.
    Wan Y; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1705-18. PubMed ID: 18986915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach.
    Wear KA; Howard SM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1453-1464. PubMed ID: 31247548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and performance of high-frequency composite transducers with triangular-pillar geometry.
    Brown JA; Chérin E; Yin J; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):827-36. PubMed ID: 19406712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophone spatial averaging corrections from 1 to 40 MHz.
    Radulescu EG; Lewin PA; Goldstein A; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1575-80. PubMed ID: 11800120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.
    Frijlink ME; Løvstakken L; Torp H
    Ultrasonics; 2009 Dec; 49(8):601-4. PubMed ID: 19403153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and performance of a 40-MHz linear array based on a 1-3 composite with geometric elevation focusing.
    Brown JA; Foster FS; Needles A; Cherin E; Lockwood GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1888-94. PubMed ID: 17941395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.
    Cannata JM; Ritter TA; Chen WH; Silverman RH; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1548-57. PubMed ID: 14682638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-element ultrasonic transducer modeling using a hybrid FD-PSTD method.
    Filoux E; Levassort F; Callé S; Certon D; Lethiecq M
    Ultrasonics; 2009 Dec; 49(8):611-4. PubMed ID: 19625065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.