These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15553879)

  • 1. [The application and advancement of rapid prototyping technology in bone tissue engineering].
    He C; Xia L; Luo Y; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Oct; 21(5):871-5. PubMed ID: 15553879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering.
    Shin M; Abukawa H; Troulis MJ; Vacanti JP
    J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and complete cellularization of hydroxyapatite for bone tissue engineering.
    Anil Kumar PR; Varma HK; Kumary TV
    Acta Biomater; 2005 Sep; 1(5):545-52. PubMed ID: 16701834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Current progress of fabricating tissue engineering scaffold using rapid prototyping techniques].
    Li X; Wang C
    Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1321-6. PubMed ID: 18998530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering.
    Wang X; Li Y; Hodgson PD; Wen C
    Tissue Eng Part A; 2010 Jan; 16(1):309-16. PubMed ID: 19705960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z; Ramay HR; Hauch KD; Xiao D; Zhang M
    Biomaterials; 2005 Jun; 26(18):3919-28. PubMed ID: 15626439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.
    Machado CB; Ventura JM; Lemos AF; Ferreira JM; Leite MF; Goes AM
    Biomed Mater; 2007 Jun; 2(2):124-31. PubMed ID: 18458445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experimental study of periosteal osteoblasts adhesion to artificial bone scaffolds based on rapid prototype].
    Xian SQ; Chai F; Zhao YM; Wang ZY; Liu XF; Li TC
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2004 Jun; 22(3):248-51. PubMed ID: 15293478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progresses in bone tissue engineering].
    Li J; Dai WD; Dong J
    Zhongguo Gu Shang; 2008 Nov; 21(11):880-2. PubMed ID: 19143265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques.
    Yang S; Leong KF; Du Z; Chua CK
    Tissue Eng; 2002 Feb; 8(1):1-11. PubMed ID: 11886649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical starch-based fibrous scaffold for bone tissue engineering applications.
    Martins A; Chung S; Pedro AJ; Sousa RA; Marques AP; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2009 Jan; 3(1):37-42. PubMed ID: 19021239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.
    Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH
    Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells.
    Jones JR; Tsigkou O; Coates EE; Stevens MM; Polak JM; Hench LL
    Biomaterials; 2007 Mar; 28(9):1653-63. PubMed ID: 17175022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on fabrication of controllable microchannel structure scaffolds and rotating dynamic culture].
    Li X; Li D; Wang L; Wang Z; Lu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):781-5. PubMed ID: 17002107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.