These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15554300)

  • 1. [Microflora of damaged ferroconcrete structures under the conditions of inhibitory protection].
    Kopteva ZhP; Zanina VV; Purish LM; Piliashenko-Novokhatnyĭ AI; Kozlova IA
    Mikrobiol Z; 2004; 66(5):68-75. PubMed ID: 15554300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Assessment of biological corrosion of ferroconcrete of ground-based industrial structures].
    Rozhanskaia AM; Piliashenko-Novokhatnyĭ AI; Purish LM; Durcheva VN; Kozlova IA
    Mikrobiol Z; 2001; 63(3):71-7. PubMed ID: 11785267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Anti-corrosive effect of pesticides in soil corrosion conditions].
    Smykun NV; Tretiak AP; Kurmakova IN
    Mikrobiol Z; 2001; 63(4):85-90. PubMed ID: 11692682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers.
    Jensen HS; Lens PN; Nielsen JL; Bester K; Nielsen AH; Hvitved-Jacobsen T; Vollertsen J
    J Hazard Mater; 2011 May; 189(3):685-91. PubMed ID: 21440988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Formation of microbial populations on the surface of protective coatings].
    Kopteva ZhP; Zanina VV; Piliashenko-Novokhatnyĭ AI; Kopteva AE; Kozlova IA
    Mikrobiol Z; 2001; 63(2):3-9. PubMed ID: 11558243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems.
    Okabe S; Odagiri M; Ito T; Satoh H
    Appl Environ Microbiol; 2007 Feb; 73(3):971-80. PubMed ID: 17142362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of sulphate-reducing bacteria on the performance of engineering materials.
    Javaherdashti R
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1507-17. PubMed ID: 21786108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex].
    Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Dynamics of successive changes in sulphidogenic microbial association under the conditions of formation of the biofilm on steel surface].
    Purish LM; Asaulenko LH
    Mikrobiol Z; 2007; 69(6):19-25. PubMed ID: 18380176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development of corrosion microbial association of soil in the presence of linuron and its derivatives].
    Prykhod'ko SV; Kurmakova IM; Tretiak OP
    Mikrobiol Z; 2007; 69(6):26-32. PubMed ID: 18380177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion.
    Dong ZH; Liu T; Liu HF
    Biofouling; 2011 May; 27(5):487-95. PubMed ID: 21604218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of various anions on the rate of microbe-induced corrosion].
    Piliashenko-Novokhatnyĭ AI; Asaulenko LG
    Mikrobiol Z; 2002; 64(6):62-6. PubMed ID: 12664552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.
    Zuo R; Ornek D; Syrett BC; Green RM; Hsu CH; Mansfeld FB; Wood TK
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):275-83. PubMed ID: 12898064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Adhesion of sulphate-reducing bacteria to steel under cathode polarization].
    Purish LM; Koptieva ZhP; Asaulenko LH; Kozlova IP
    Mikrobiol Z; 2006; 68(1):54-61. PubMed ID: 16686219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-stage autotrophic nitrogen-removal process using a composite matrix immobilizing nitrifying and sulfur-denitrifying bacteria.
    Aoi Y; Shiramasa Y; Kakimoto E; Tsuneda S; Hirata A; Nagamune T
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):124-30. PubMed ID: 15692803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface neutralization and H(2)S oxidation at early stages of sewer corrosion: influence of temperature, relative humidity and H(2)S concentration.
    Joseph AP; Keller J; Bustamante H; Bond PL
    Water Res; 2012 Sep; 46(13):4235-45. PubMed ID: 22677502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor.
    Rao TS; Kora AJ; Chandramohan P; Panigrahi BS; Narasimhan SV
    Biofouling; 2009 Oct; 25(7):581-91. PubMed ID: 20183117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads.
    Sun X; Jiang G; Bond PL; Keller J
    Water Res; 2015 Sep; 81():84-91. PubMed ID: 26043374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.