BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 15554355)

  • 1. Comparative assessment of the inhibition of recombinant human CYP19 (aromatase) by azoles used in agriculture and as drugs for humans.
    Trösken ER; Scholz K; Lutz RW; Völkel W; Zarn JA; Lutz WK
    Endocr Res; 2004 Aug; 30(3):387-94. PubMed ID: 15554355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of human CYP19 by azoles used as antifungal agents and aromatase inhibitors, using a new LC-MS/MS method for the analysis of estradiol product formation.
    Trösken ER; Fischer K; Völkel W; Lutz WK
    Toxicology; 2006 Feb; 219(1-3):33-40. PubMed ID: 16330141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azoles additively inhibit cytochrome P450 1 (EROD) and 19 (aromatase) in rainbow trout (Oncorhynchus mykiss).
    Beijer K; Jönsson M; Shaik S; Behrens D; Brunström B; Brandt I
    Aquat Toxicol; 2018 May; 198():73-81. PubMed ID: 29522952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of lanosterol-14 alpha-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles.
    Trösken ER; Adamska M; Arand M; Zarn JA; Patten C; Völkel W; Lutz WK
    Toxicology; 2006 Nov; 228(1):24-32. PubMed ID: 16989930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of inhibition of estrogen biosynthesis by azole fungicides.
    Egbuta C; Lo J; Ghosh D
    Endocrinology; 2014 Dec; 155(12):4622-8. PubMed ID: 25243857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase.
    Zarn JA; Brüschweiler BJ; Schlatter JR
    Environ Health Perspect; 2003 Mar; 111(3):255-61. PubMed ID: 12611652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The classic azole antifungal drugs are highly potent endocrine disruptors in vitro inhibiting steroidogenic CYP enzymes at concentrations lower than therapeutic Cmax.
    Munkboel CH; Rasmussen TB; Elgaard C; Olesen MK; Kretschmann AC; Styrishave B
    Toxicology; 2019 Sep; 425():152247. PubMed ID: 31330226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing pregnancy risks of azole antifungals using a high throughput aromatase inhibition assay.
    Kragie L; Turner SD; Patten CJ; Crespi CL; Stresser DM
    Endocr Res; 2002 Aug; 28(3):129-40. PubMed ID: 12489563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infectious diseases. Farm fungicides linked to resistance in a human pathogen.
    Enserink M
    Science; 2009 Nov; 326(5957):1173. PubMed ID: 19965440
    [No Abstract]   [Full Text] [Related]  

  • 10. Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals.
    Tyndall JD; Sabherwal M; Sagatova AA; Keniya MV; Negroni J; Wilson RK; Woods MA; Tietjen K; Monk BC
    PLoS One; 2016; 11(12):e0167485. PubMed ID: 27907120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design.
    Monk BC; Sagatova AA; Hosseini P; Ruma YN; Wilson RK; Keniya MV
    Biochim Biophys Acta Proteins Proteom; 2020 Mar; 1868(3):140206. PubMed ID: 30851431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azole resistant Aspergillus fumigatus: an emerging problem.
    Lelièvre L; Groh M; Angebault C; Maherault AC; Didier E; Bougnoux ME
    Med Mal Infect; 2013 Apr; 43(4):139-45. PubMed ID: 23562488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New azole derivatives showing antimicrobial effects and their mechanism of antifungal activity by molecular modeling studies.
    Doğan İS; Saraç S; Sari S; Kart D; Eşsiz Gökhan Ş; Vural İ; Dalkara S
    Eur J Med Chem; 2017 Apr; 130():124-138. PubMed ID: 28242548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical approaches to selective antifungal activity. Focus on azole antifungals.
    Vanden Bossche H; Marichal P; Gorrens J; Coene MC; Willemsens G; Bellens D; Roels I; Moereels H; Janssen PA
    Mycoses; 1989; 32 Suppl 1():35-52. PubMed ID: 2561184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, Synthesis, and Biological Evaluation of New Azole Derivatives as Potent Aromatase Inhibitors with Potential Effects against Breast Cancer.
    Kalalinia F; Jouya M; Komachali AK; Aboutourabzadeh SM; Karimi G; Behravan J; Abnous K; Etemad L; Kamali H; Hadizadeh F
    Anticancer Agents Med Chem; 2018; 18(7):1016-1024. PubMed ID: 29336269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azole sensitivity in Leptosphaeria pathogens of oilseed rape: the role of lanosterol 14α-demethylase.
    Sewell TR; Hawkins NJ; Stotz HU; Huang Y; Kelly SL; Kelly DE; Fraaije B; Fitt BDL
    Sci Rep; 2017 Nov; 7(1):15849. PubMed ID: 29158527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitisation of an Azole-Resistant Aspergillus fumigatus Strain containing the Cyp51A-Related Mutation by Deleting the SrbA Gene.
    Hagiwara D; Watanabe A; Kamei K
    Sci Rep; 2016 Dec; 6():38833. PubMed ID: 27934927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genesis of Azole Antifungal Resistance from Agriculture to Clinical Settings.
    Azevedo MM; Faria-Ramos I; Cruz LC; Pina-Vaz C; Rodrigues AG
    J Agric Food Chem; 2015 Sep; 63(34):7463-8. PubMed ID: 26289797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of lanosterol and its major metabolite FF-MAS in an inhibition assay of CYP51 by azoles with atmospheric pressure photoionization based LC-MS/MS.
    Trösken ER; Straube E; Lutz WK; Völkel W; Patten C
    J Am Soc Mass Spectrom; 2004 Aug; 15(8):1216-21. PubMed ID: 15276168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different inhibitory effects of azole-containing drugs and pesticides on CYP2C9 polymorphic forms: An in vitro study.
    Haidukevich IV; Sushko TA; Tumilovich AM; Grabovec IP; Usanov SA; Gilep AA
    Toxicol In Vitro; 2018 Aug; 50():249-256. PubMed ID: 29621561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.