BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 15554478)

  • 21. Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil.
    Lepp NW; Madejón P
    J Environ Qual; 2007; 36(4):1123-31. PubMed ID: 17596620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.
    Senthilkumar P; Prince WS; Sivakumar S; Subbhuraam CV
    Chemosphere; 2005 Sep; 60(10):1493-6. PubMed ID: 16054919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead.
    Wang S; Shi X; Sun H; Chen Y; Pan H; Yang X; Rafiq T
    PLoS One; 2014; 9(9):e108568. PubMed ID: 25268840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative performance of
    Salehi A; Shariat A
    Int J Phytoremediation; 2024; 26(9):1369-1378. PubMed ID: 38415612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics.
    Gogorcena Y; Larbi A; Andaluz S; Carpena RO; Abadía A; Abadía J
    Tree Physiol; 2011 Dec; 31(12):1401-12. PubMed ID: 22121153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interclonal variation of heavy metal interactions in Salix viminalis.
    Landberg T; Greger M
    Environ Toxicol Chem; 2002 Dec; 21(12):2669-74. PubMed ID: 12463563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case.
    Wang FY; Lin XG; Yin R
    Environ Pollut; 2007 May; 147(1):248-55. PubMed ID: 17011687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal uptake by plant parts of willow species: A meta-analysis.
    Tőzsér D; Magura T; Simon E
    J Hazard Mater; 2017 Aug; 336():101-109. PubMed ID: 28482187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture.
    Xu X; Yang B; Qin G; Wang H; Zhu Y; Zhang K; Yang H
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19770-19784. PubMed ID: 31090001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.
    Li Z; Wu L; Hu P; Luo Y; Christie P
    J Hazard Mater; 2013 Oct; 261():332-41. PubMed ID: 23959253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoextraction of risk elements by willow and poplar trees.
    Kacálková L; Tlustoš P; Száková J
    Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.).
    Tani FH; Barrington S
    Environ Pollut; 2005 Dec; 138(3):548-58. PubMed ID: 16043272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense L.
    Wei L; Luo C; Li X; Shen Z
    Arch Environ Contam Toxicol; 2008 Aug; 55(2):238-46. PubMed ID: 18183449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction.
    Yang WD; Wang YY; Zhao FL; Ding ZL; Zhang XC; Zhu ZQ; Yang XE
    J Zhejiang Univ Sci B; 2014 Sep; 15(9):788-800. PubMed ID: 25183033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees.
    Ucisik AS; Trapp S
    Arch Environ Contam Toxicol; 2008 May; 54(4):619-27. PubMed ID: 17960449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoremediation of soils contaminated with phenanthrene and cadmium by growing willow (Salix × aureo-pendula CL 'j1011').
    Sun YY; Xu HX; Li JH; Shi XQ; Wu JC; Ji R; Guo HY
    Int J Phytoremediation; 2016; 18(2):150-6. PubMed ID: 26247604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.
    McBride MB; Martinez CE; Kim B
    Int J Phytoremediation; 2016 Dec; 18(12):1178-86. PubMed ID: 27216699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson].
    Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R
    Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea.
    Vandecasteele B; Quataert P; Tack FM
    Environ Pollut; 2005 May; 135(2):303-12. PubMed ID: 15734590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.