BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1454 related articles for article (PubMed ID: 15555419)

  • 1. Lead induced oxidative stress and its recovery following co-administration of melatonin or N-acetylcysteine during chelation with succimer in male rats.
    Flora SJ; Pande M; Kannan GM; Mehta A
    Cell Mol Biol (Noisy-le-grand); 2004; 50 Online Pub():OL543-51. PubMed ID: 15555419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of combined administration of captopril and DMSA on arsenite induced oxidative stress and blood and tissue arsenic concentration in rats.
    Kalia K; Narula GD; Kannan GM; Flora SJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Jan; 144(4):372-9. PubMed ID: 17188940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial role of monoesters of meso-2,3-dimercaptosuccinic acid in the mobilization of lead and recovery of tissue oxidative injury in rats.
    Saxena G; Pathak U; Flora SJ
    Toxicology; 2005 Oct; 214(1-2):39-56. PubMed ID: 16019123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quercetin administration during chelation therapy protects arsenic-induced oxidative stress in mice.
    Mishra D; Flora SJ
    Biol Trace Elem Res; 2008 May; 122(2):137-47. PubMed ID: 18183357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined administration of N-acetylcysteine and monoisoamyl DMSA on tissue oxidative stress during arsenic chelation therapy.
    Kannan GM; Flora SJ
    Biol Trace Elem Res; 2006 Apr; 110(1):43-59. PubMed ID: 16679547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of lead-induced oxidative stress and alterations in biogenic amines in different rat brain regions to combined administration of DMSA and MiADMSA.
    Flora SJ; Saxena G; Gautam P; Kaur P; Gill KD
    Chem Biol Interact; 2007 Dec; 170(3):209-20. PubMed ID: 17870063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial effect of combined administration of some naturally occurring antioxidants (vitamins) and thiol chelators in the treatment of chronic lead intoxication.
    Flora SJ; Pande M; Mehta A
    Chem Biol Interact; 2003 Jun; 145(3):267-80. PubMed ID: 12732454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal of arsenic-induced hepatic apoptosis with combined administration of DMSA and its analogues in guinea pigs: role of glutathione and linked enzymes.
    Mishra D; Mehta A; Flora SJ
    Chem Res Toxicol; 2008 Feb; 21(2):400-7. PubMed ID: 18163546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats.
    Xia D; Yu X; Liao S; Shao Q; Mou H; Ma W
    J Ethnopharmacol; 2010 Jul; 130(2):414-20. PubMed ID: 20580805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in brain biogenic amines and haem biosynthesis and their response to combined administration of succimers and Centella asiatica in lead poisoned rats.
    Saxena G; Flora SJ
    J Pharm Pharmacol; 2006 Apr; 58(4):547-59. PubMed ID: 16597373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead induced oxidative damage and its response to combined administration of alpha-lipoic acid and succimers in rats.
    Pande M; Flora SJ
    Toxicology; 2002 Aug; 177(2-3):187-96. PubMed ID: 12135622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Centella asiatica on arsenic induced oxidative stress and metal distribution in rats.
    Gupta R; Flora SJ
    J Appl Toxicol; 2006; 26(3):213-22. PubMed ID: 16389662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined administration of taurine and meso 2,3-dimercaptosuccinic acid in the treatment of chronic lead intoxication in rats.
    Flora SJ; Pande M; Bhadauria S; Kannan GM
    Hum Exp Toxicol; 2004 Apr; 23(4):157-66. PubMed ID: 15171566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead-induced oxidative stress and hematological alterations and their response to combined administration of calcium disodium EDTA with a thiol chelator in rats.
    Saxena G; Flora SJ
    J Biochem Mol Toxicol; 2004; 18(4):221-33. PubMed ID: 15452883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concomitant administration of Moringa oleifera seed powder in the remediation of arsenic-induced oxidative stress in mouse.
    Gupta R; Dubey DK; Kannan GM; Flora SJ
    Cell Biol Int; 2007 Jan; 31(1):44-56. PubMed ID: 17055307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic-induced oxidative stress and its reversibility following combined administration of N-acetylcysteine and meso 2,3-dimercaptosuccinic acid in rats.
    Flora SJ
    Clin Exp Pharmacol Physiol; 1999 Nov; 26(11):865-9. PubMed ID: 10561806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic and lead induced free radical generation and their reversibility following chelation.
    Flora SJ; Flora G; Saxena G; Mishra M
    Cell Mol Biol (Noisy-le-grand); 2007 Apr; 53(1):26-47. PubMed ID: 17519110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of leaves extract of Ocimum sanctum L. on arsenic-induced toxicity in Wistar albino rats.
    Sharmila Banu G; Kumar G; Murugesan AG
    Food Chem Toxicol; 2009 Feb; 47(2):490-5. PubMed ID: 19111884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney.
    Sivaprasad R; Nagaraj M; Varalakshmi P
    Arch Toxicol; 2002 Aug; 76(8):437-41. PubMed ID: 12185410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of arsenic-induced oxidative stress, DNA damage, and metal imbalance to combined administration of DMSA and monoisoamyl-DMSA during chronic arsenic poisoning in rats.
    Bhadauria S; Flora SJ
    Cell Biol Toxicol; 2007 Mar; 23(2):91-104. PubMed ID: 17086449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 73.