BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 15555597)

  • 1. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation.
    Helvig C; Tijet N; Feyereisen R; Walker FA; Restifo LL
    Biochem Biophys Res Commun; 2004 Dec; 325(4):1495-502. PubMed ID: 15555597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of lauric acid omega-hydroxylation by a CYP4A1/NADPH-cytochrome P450 reductase fusion protein.
    Chaurasia CS; Alterman MA; Lu P; Hanzlik RP
    Arch Biochem Biophys; 1995 Feb; 317(1):161-9. PubMed ID: 7872779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of steric bulk and conformational rigidity on fatty acid omega hydroxylation by a cytochrome P450 4A1 fusion protein.
    Bambal RB; Hanzlik RP
    Arch Biochem Biophys; 1996 Oct; 334(1):59-66. PubMed ID: 8837739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of CYP4A11 as the major lauric acid omega-hydroxylase in human liver microsomes.
    Powell PK; Wolf I; Lasker JM
    Arch Biochem Biophys; 1996 Nov; 335(1):219-26. PubMed ID: 8914854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4.
    Scheller U; Zimmer T; Kärgel E; Schunck WH
    Arch Biochem Biophys; 1996 Apr; 328(2):245-54. PubMed ID: 8645001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omega- and (omega-1)-hydroxylation of lauric acid and arachidonic acid by rat renal cytochrome P-450.
    Imaoka S; Tanaka S; Funae Y
    Biochem Int; 1989 Apr; 18(4):731-40. PubMed ID: 2504167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site structure and substrate specificity of cytochrome P450 4A1: steric control of ligand approach perpendicular to heme plane.
    Bambal RB; Hanzlik RP
    Biochem Biophys Res Commun; 1996 Feb; 219(2):445-9. PubMed ID: 8605007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture.
    Bhaskara S; Dean ED; Lam V; Ganguly R
    Gene; 2006 Aug; 377():56-64. PubMed ID: 16713132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CYP2M1: cloning, sequencing, and expression of a new cytochrome P450 from rainbow trout liver with fatty acid (omega-6)-hydroxylation activity.
    Yang YH; Wang JL; Miranda CL; Buhler DR
    Arch Biochem Biophys; 1998 Apr; 352(2):271-80. PubMed ID: 9587416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450-dependent fatty acid omega-hydroxylase.
    Benveniste I; Tijet N; Adas F; Philipps G; Salaün JP; Durst F
    Biochem Biophys Res Commun; 1998 Feb; 243(3):688-93. PubMed ID: 9500987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme-coordinating analogs of lauric acid as inhibitors of fatty acid omega-hydroxylation.
    Lu P; Alterman MA; Chaurasia CS; Bambal RB; Hanzlik RP
    Arch Biochem Biophys; 1997 Jan; 337(1):1-7. PubMed ID: 8990261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate.
    Loughran PA; Roman LJ; Miller RT; Masters BS
    Arch Biochem Biophys; 2001 Jan; 385(2):311-21. PubMed ID: 11368012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caffeine induction of Cyp6a2 and Cyp6a8 genes of Drosophila melanogaster is modulated by cAMP and D-JUN protein levels.
    Bhaskara S; Chandrasekharan MB; Ganguly R
    Gene; 2008 May; 415(1-2):49-59. PubMed ID: 18395996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae.
    Saner C; Weibel B; Wurgler FE; Sengstag C
    Environ Mol Mutagen; 1996; 27(1):46-58. PubMed ID: 8625948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards gamma- and delta-positions.
    Dietrich M; Do TA; Schmid RD; Pleiss J; Urlacher VB
    J Biotechnol; 2009 Jan; 139(1):115-7. PubMed ID: 18984016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human fatty acid omega-hydroxylase, CYP4A11: determination of complete genomic sequence and characterization of purified recombinant protein.
    Kawashima H; Naganuma T; Kusunose E; Kono T; Yasumoto R; Sugimura K; Kishimoto T
    Arch Biochem Biophys; 2000 Jun; 378(2):333-9. PubMed ID: 10860550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The omega-hydroxlyation of lauric acid: oxidation of 12-hydroxlauric acid to dodecanedioic acid by a purified recombinant fusion protein containing P450 4A1 and NADPH-P450 reductase.
    Shet Ms; Fisher CW; Holmans PL; Estabrook RW
    Arch Biochem Biophys; 1996 Jun; 330(1):199-208. PubMed ID: 8651697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Drosophila cytochrome P450 gene Cyp6a2: structure, localization, heterologous expression, and induction by phenobarbital.
    Dunkov BC; Guzov VM; Mocelin G; Shotkoski F; Brun A; Amichot M; Ffrench-Constant RH; Feyereisen R
    DNA Cell Biol; 1997 Nov; 16(11):1345-56. PubMed ID: 9407006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid omega-hydroxylases.
    Hoch U; Zhang Z; Kroetz DL; Ortiz de Montellano PR
    Arch Biochem Biophys; 2000 Jan; 373(1):63-71. PubMed ID: 10620324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.