These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 15555603)
1. Specific interactions of tryptophan with phosphatidylcholine and digalactosyldiacylglycerol in pure and mixed bilayers in the dry and hydrated state. Popova AV; Hincha DK Chem Phys Lipids; 2004 Dec; 132(2):171-84. PubMed ID: 15555603 [TBL] [Abstract][Full Text] [Related]
2. Intermolecular interactions in dry and rehydrated pure and mixed bilayers of phosphatidylcholine and digalactosyldiacylglycerol: a Fourier transform infrared spectroscopy study. Popova AV; Hincha DK Biophys J; 2003 Sep; 85(3):1682-90. PubMed ID: 12944283 [TBL] [Abstract][Full Text] [Related]
3. Effects of the sugar headgroup of a glycoglycerolipid on the phase behavior of phospholipid model membranes in the dry state. Popova AV; Hincha DK Glycobiology; 2005 Nov; 15(11):1150-5. PubMed ID: 15972890 [TBL] [Abstract][Full Text] [Related]
4. Effects of cholesterol on dry bilayers: interactions between phosphatidylcholine unsaturation and glycolipid or free sugar. Popova AV; Hincha DK Biophys J; 2007 Aug; 93(4):1204-14. PubMed ID: 17526577 [TBL] [Abstract][Full Text] [Related]
5. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
6. Dehydrating phospholipid vesicles measured in real-time using ATR Fourier transform infrared spectroscopy. Wolkers WF; Oldenhof H; Glasmacher B Cryobiology; 2010 Aug; 61(1):108-14. PubMed ID: 20566369 [TBL] [Abstract][Full Text] [Related]
7. Differential destabilization of membranes by tryptophan and phenylalanine during freezing: the roles of lipid composition and membrane fusion. Popova AV; Heyer AG; Hincha DK Biochim Biophys Acta; 2002 Mar; 1561(1):109-18. PubMed ID: 11988185 [TBL] [Abstract][Full Text] [Related]
8. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation. Lindblom G; Orädd G; Filippov A Chem Phys Lipids; 2006 Jun; 141(1-2):179-84. PubMed ID: 16580657 [TBL] [Abstract][Full Text] [Related]
9. beta-Sheet structured beta-amyloid(1-40) perturbs phosphatidylcholine model membranes. de Planque MR; Raussens V; Contera SA; Rijkers DT; Liskamp RM; Ruysschaert JM; Ryan JF; Separovic F; Watts A J Mol Biol; 2007 May; 368(4):982-97. PubMed ID: 17382345 [TBL] [Abstract][Full Text] [Related]
10. Infrared study of the structure and composition of rabbit lens membranes: a comparative analysis of the lipids of the nucleus, cortex and epithelium. Lamba OP; Borchman D; Garner WH Exp Eye Res; 1993 Jul; 57(1):1-12. PubMed ID: 8405165 [TBL] [Abstract][Full Text] [Related]
11. Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy. Arsov Z; Quaroni L Chem Phys Lipids; 2007 Nov; 150(1):35-48. PubMed ID: 17662974 [TBL] [Abstract][Full Text] [Related]
12. [Effect of cholesterol on the structure and dynamic properties of unsaturated phospholipid bilayers]. Kornilov VV; Rabinovich AL; Balabaev NK; Bessonov VV Biofizika; 2008; 53(1):84-92. PubMed ID: 18488506 [TBL] [Abstract][Full Text] [Related]
13. The preference of tryptophan for membrane interfaces. Yau WM; Wimley WC; Gawrisch K; White SH Biochemistry; 1998 Oct; 37(42):14713-8. PubMed ID: 9778346 [TBL] [Abstract][Full Text] [Related]
14. Relevance of lipid polar headgroups on boron-mediated changes in membrane physical properties. Verstraeten SV; Lanoue L; Keen CL; Oteiza PI Arch Biochem Biophys; 2005 Jun; 438(1):103-10. PubMed ID: 15882836 [TBL] [Abstract][Full Text] [Related]
15. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies. Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365 [TBL] [Abstract][Full Text] [Related]
16. Glycolipid membranes through atomistic simulations: effect of glucose and galactose head groups on lipid bilayer properties. Róg T; Vattulainen I; Bunker A; Karttunen M J Phys Chem B; 2007 Aug; 111(34):10146-54. PubMed ID: 17676793 [TBL] [Abstract][Full Text] [Related]
17. Thermal stability of outer membrane protein porin from Paracoccus denitrificans: FT-IR as a spectroscopic tool to study lipid-protein interaction. Sukumaran S; Hauser K; Rauscher A; Mäntele W FEBS Lett; 2005 May; 579(12):2546-50. PubMed ID: 15862288 [TBL] [Abstract][Full Text] [Related]
18. A synergistic effect between cholesterol and tryptophan-flanked transmembrane helices modulates membrane curvature. van Duyl BY; Meeldijk H; Verkleij AJ; Rijkers DT; Chupin V; de Kruijff B; Killian JA Biochemistry; 2005 Mar; 44(11):4526-32. PubMed ID: 15766283 [TBL] [Abstract][Full Text] [Related]
19. L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence. Sarangi NK; Patnaik A Chemphyschem; 2012 Dec; 13(18):4258-70. PubMed ID: 23090939 [TBL] [Abstract][Full Text] [Related]
20. Lipid composition alters drug action at the nicotinic acetylcholine receptor. Baenziger JE; Ryan SE; Goodreid MM; Vuong NQ; Sturgeon RM; daCosta CJ Mol Pharmacol; 2008 Mar; 73(3):880-90. PubMed ID: 18055762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]