BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

749 related articles for article (PubMed ID: 15555928)

  • 1. Temporally distinct demands for classic cadherins in synapse formation and maturation.
    Bozdagi O; Valcin M; Poskanzer K; Tanaka H; Benson DL
    Mol Cell Neurosci; 2004 Dec; 27(4):509-21. PubMed ID: 15555928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmentally regulated changes in cellular compartmentation and synaptic distribution of actin in hippocampal neurons.
    Zhang W; Benson DL
    J Neurosci Res; 2002 Aug; 69(4):427-36. PubMed ID: 12210837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadherin-8 and N-cadherin differentially regulate pre- and postsynaptic development of the hippocampal mossy fiber pathway.
    Bekirov IH; Nagy V; Svoronos A; Huntley GW; Benson DL
    Hippocampus; 2008; 18(4):349-63. PubMed ID: 18064706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadherin regulates dendritic spine morphogenesis.
    Togashi H; Abe K; Mizoguchi A; Takaoka K; Chisaka O; Takeichi M
    Neuron; 2002 Jul; 35(1):77-89. PubMed ID: 12123610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of beta-catenin in synaptic vesicle localization and presynaptic assembly.
    Bamji SX; Shimazu K; Kimes N; Huelsken J; Birchmeier W; Lu B; Reichardt LF
    Neuron; 2003 Nov; 40(4):719-31. PubMed ID: 14622577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadherins communicate structural plasticity of presynaptic and postsynaptic terminals.
    Goda Y
    Neuron; 2002 Jul; 35(1):1-3. PubMed ID: 12123599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stages of synapse development defined by dependence on F-actin.
    Zhang W; Benson DL
    J Neurosci; 2001 Jul; 21(14):5169-81. PubMed ID: 11438592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-cadherin redistribution during synaptogenesis in hippocampal neurons.
    Benson DL; Tanaka H
    J Neurosci; 1998 Sep; 18(17):6892-904. PubMed ID: 9712659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal and spatial localization of nectin-1 and l-afadin during synaptogenesis in hippocampal neurons.
    Lim ST; Lim KC; Giuliano RE; Federoff HJ
    J Comp Neurol; 2008 Mar; 507(2):1228-44. PubMed ID: 18181141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postsynaptic Y654 dephosphorylation of β-catenin modulates presynaptic vesicle turnover through increased n-cadherin-mediated transsynaptic signaling.
    Chen CY; Chen YT; Wang JY; Huang YS; Tai CY
    Dev Neurobiol; 2017 Jan; 77(1):61-74. PubMed ID: 27328456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular modification of N-cadherin in response to synaptic activity.
    Tanaka H; Shan W; Phillips GR; Arndt K; Bozdagi O; Shapiro L; Huntley GW; Benson DL; Colman DR
    Neuron; 2000 Jan; 25(1):93-107. PubMed ID: 10707975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct FGFs promote differentiation of excitatory and inhibitory synapses.
    Terauchi A; Johnson-Venkatesh EM; Toth AB; Javed D; Sutton MA; Umemori H
    Nature; 2010 Jun; 465(7299):783-7. PubMed ID: 20505669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential control of presynaptic efficacy by postsynaptic N-cadherin and β-catenin.
    Vitureira N; Letellier M; White IJ; Goda Y
    Nat Neurosci; 2011 Dec; 15(1):81-9. PubMed ID: 22138644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane agrin regulates dendritic filopodia and synapse formation in mature hippocampal neuron cultures.
    McCroskery S; Bailey A; Lin L; Daniels MP
    Neuroscience; 2009 Sep; 163(1):168-79. PubMed ID: 19524020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function.
    Murase S; Mosser E; Schuman EM
    Neuron; 2002 Jul; 35(1):91-105. PubMed ID: 12123611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors.
    Elmariah SB; Oh EJ; Hughes EG; Balice-Gordon RJ
    J Neurosci; 2005 Apr; 25(14):3638-50. PubMed ID: 15814795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation.
    Dobie FA; Craig AM
    J Neurosci; 2011 Jul; 31(29):10481-93. PubMed ID: 21775594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
    Gryder DS; Castaneda DC; Rogawski MA
    J Neurochem; 2005 Sep; 94(6):1728-38. PubMed ID: 16045445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses.
    Tyler WJ; Pozzo-Miller LD
    J Neurosci; 2001 Jun; 21(12):4249-58. PubMed ID: 11404410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin.
    Futai K; Kim MJ; Hashikawa T; Scheiffele P; Sheng M; Hayashi Y
    Nat Neurosci; 2007 Feb; 10(2):186-95. PubMed ID: 17237775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.