BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15556081)

  • 21. The N-terminal regulatory domain of Stp1p is modular and, fused to an artificial transcription factor, confers full Ssy1p-Ptr3p-Ssy5p sensor control.
    Andréasson C; Ljungdahl PO
    Mol Cell Biol; 2004 Sep; 24(17):7503-13. PubMed ID: 15314160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae.
    Ter Linde JJ; Steensma HY
    Yeast; 2002 Jul; 19(10):825-40. PubMed ID: 12112237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source.
    Ronen M; Botstein D
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):389-94. PubMed ID: 16381818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MIG1-dependent and MIG1-independent regulation of GAL gene expression in Saccharomyces cerevisiae: role of Imp2p.
    Alberti A; Lodi T; Ferrero I; Donnini C
    Yeast; 2003 Oct; 20(13):1085-96. PubMed ID: 14558142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae.
    Kolaczkowski M; Kolaczkowska A; Gaigg B; Schneiter R; Moye-Rowley WS
    Eukaryot Cell; 2004 Aug; 3(4):880-92. PubMed ID: 15302821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae.
    Liko D; Slattery MG; Heideman W
    J Biol Chem; 2007 Sep; 282(36):26623-8. PubMed ID: 17616518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.
    Prasad V; Venkatesh KV
    BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants.
    DeRisi J; van den Hazel B; Marc P; Balzi E; Brown P; Jacq C; Goffeau A
    FEBS Lett; 2000 Mar; 470(2):156-60. PubMed ID: 10734226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SCFGrr1-mediated ubiquitination of Gis4 modulates glucose response in yeast.
    La Rue J; Tokarz S; Lanker S
    J Mol Biol; 2005 Jun; 349(4):685-98. PubMed ID: 15890364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae.
    Nourani A; Robert F; Winston F
    Mol Cell Biol; 2006 Feb; 26(4):1496-509. PubMed ID: 16449659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii.
    Alves-Araújo C; Hernandez-Lopez MJ; Prieto JA; Randez-Gil F; Sousa MJ
    Yeast; 2005 Feb; 22(3):165-75. PubMed ID: 15704215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steady-state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in Saccharomyces cerevisiae.
    Verma M; Bhat PJ; Venkatesh KV
    Biochem J; 2005 Jun; 388(Pt 3):843-9. PubMed ID: 15698380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DDSE: downstream targets of the SNF3 signal transduction pathway.
    Theodoris G; Bisson LF
    FEMS Microbiol Lett; 2001 Apr; 197(1):73-7. PubMed ID: 11287149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cis-acting sites contributing to expression of divergently transcribed DAL1 and DAL4 genes in S. cerevisiae: a word of caution when correlating cis-acting sequences with genome-wide expression analyses.
    van der Merwe GK; van Vuuren HJ; Cooper TG
    Curr Genet; 2001 May; 39(3):156-65. PubMed ID: 11409177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT; Culotta VC
    J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae.
    Avram D; Bakalinsky AT
    Genetics; 1996 Oct; 144(2):511-21. PubMed ID: 8889516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.