These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 15556183)
1. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Iyer A; Mody K; Jha B Mar Pollut Bull; 2004 Dec; 49(11-12):974-7. PubMed ID: 15556183 [TBL] [Abstract][Full Text] [Related]
2. Tolerance and accumulation of hexavalent chromium by two seaweed associated aspergilli. Vala AK; Anand N; Bhatt PN; Joshi HV Mar Pollut Bull; 2004 May; 48(9-10):983-5. PubMed ID: 15111047 [TBL] [Abstract][Full Text] [Related]
3. Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B. Naik MM; Pandey A; Dubey SK Biodegradation; 2012 Sep; 23(5):775-83. PubMed ID: 22544353 [TBL] [Abstract][Full Text] [Related]
4. Biosorption of heavy metals by a marine bacterium. Iyer A; Mody K; Jha B Mar Pollut Bull; 2005 Mar; 50(3):340-3. PubMed ID: 15757698 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of chromium(VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Ozturk S; Aslim B; Suludere Z Bioresour Technol; 2009 Dec; 100(23):5588-93. PubMed ID: 19560345 [TBL] [Abstract][Full Text] [Related]
6. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. Morales DK; Ocampo W; Zambrano MM J Appl Microbiol; 2007 Dec; 103(6):2704-12. PubMed ID: 18045449 [TBL] [Abstract][Full Text] [Related]
7. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. Bankar AV; Kumar AR; Zinjarde SS J Hazard Mater; 2009 Oct; 170(1):487-94. PubMed ID: 19467781 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Park D; Yun YS; Jo JH; Park JM Water Res; 2005 Feb; 39(4):533-40. PubMed ID: 15707625 [TBL] [Abstract][Full Text] [Related]
9. Characterization of an exopolysaccharide produced by a marine Enterobacter cloacae. Iyer A; Mody K; Jha B Indian J Exp Biol; 2005 May; 43(5):467-71. PubMed ID: 15900914 [TBL] [Abstract][Full Text] [Related]
10. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972 [TBL] [Abstract][Full Text] [Related]
11. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. Rahman A; Nahar N; Nawani NN; Jass J; Hossain K; Saud ZA; Saha AK; Ghosh S; Olsson B; Mandal A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(11):1136-47. PubMed ID: 26191988 [TBL] [Abstract][Full Text] [Related]
12. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056 [TBL] [Abstract][Full Text] [Related]
13. Cellular and biochemical response to Cr(VI) in Stenotrophomonas sp. Morel MA; Ubalde MC; Olivera-Bravo S; Callejas C; Gill PR; Castro-Sowinski S FEMS Microbiol Lett; 2009 Feb; 291(2):162-8. PubMed ID: 19146572 [TBL] [Abstract][Full Text] [Related]
14. Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges. Caravelli AH; Giannuzzi L; Zaritzky NE J Hazard Mater; 2008 Aug; 156(1-3):214-22. PubMed ID: 18215460 [TBL] [Abstract][Full Text] [Related]
15. Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Xu CL; Wang YZ; Jin ML; Yang XQ Bioresour Technol; 2009 Mar; 100(6):2095-7. PubMed ID: 19056259 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Srivastava S; Thakur IS Biodegradation; 2007 Oct; 18(5):637-46. PubMed ID: 17203372 [TBL] [Abstract][Full Text] [Related]
17. Root uptake and reduction of hexavalent chromium by aquatic macrophytes as assessed by high-resolution X-ray emission. Espinoza-Quiñones FR; Martin N; Stutz G; Tirao G; Palácio SM; Rizzutto MA; Módenes AN; Silva FG; Szymanski N; Kroumov AD Water Res; 2009 Sep; 43(17):4159-66. PubMed ID: 19595427 [TBL] [Abstract][Full Text] [Related]
18. X-ray absorption near edge structure and extended X-ray absorption fine structure analysis of standards and biological samples containing mixed oxidation states of chromium(III) and chromium(VI). Parsons JG; Dokken K; Peralta-Videa JR; Romero-Gonzalez J; Gardea-Torresdey JL Appl Spectrosc; 2007 Mar; 61(3):338-45. PubMed ID: 17389076 [TBL] [Abstract][Full Text] [Related]
19. Implication of chromium speciation on disposal of discarded CCA-treated wood. Song J; Dubey B; Jang YC; Townsend T; Solo-Gabriele H J Hazard Mater; 2006 Feb; 128(2-3):280-8. PubMed ID: 16165268 [TBL] [Abstract][Full Text] [Related]
20. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery. Sun S; Luo Y; Cao S; Li W; Zhang Z; Jiang L; Dong H; Yu L; Wu WM Bioresour Technol; 2013 Sep; 144():44-9. PubMed ID: 23856587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]