BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15556183)

  • 1. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae.
    Iyer A; Mody K; Jha B
    Mar Pollut Bull; 2004 Dec; 49(11-12):974-7. PubMed ID: 15556183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance and accumulation of hexavalent chromium by two seaweed associated aspergilli.
    Vala AK; Anand N; Bhatt PN; Joshi HV
    Mar Pollut Bull; 2004 May; 48(9-10):983-5. PubMed ID: 15111047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B.
    Naik MM; Pandey A; Dubey SK
    Biodegradation; 2012 Sep; 23(5):775-83. PubMed ID: 22544353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption of heavy metals by a marine bacterium.
    Iyer A; Mody K; Jha B
    Mar Pollut Bull; 2005 Mar; 50(3):340-3. PubMed ID: 15757698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of chromium(VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition.
    Ozturk S; Aslim B; Suludere Z
    Bioresour Technol; 2009 Dec; 100(23):5588-93. PubMed ID: 19560345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure.
    Morales DK; Ocampo W; Zambrano MM
    J Appl Microbiol; 2007 Dec; 103(6):2704-12. PubMed ID: 18045449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica.
    Bankar AV; Kumar AR; Zinjarde SS
    J Hazard Mater; 2009 Oct; 170(1):487-94. PubMed ID: 19467781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger.
    Park D; Yun YS; Jo JH; Park JM
    Water Res; 2005 Feb; 39(4):533-40. PubMed ID: 15707625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an exopolysaccharide produced by a marine Enterobacter cloacae.
    Iyer A; Mody K; Jha B
    Indian J Exp Biol; 2005 May; 43(5):467-71. PubMed ID: 15900914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes.
    Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF
    Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA.
    Rahman A; Nahar N; Nawani NN; Jass J; Hossain K; Saud ZA; Saha AK; Ghosh S; Olsson B; Mandal A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(11):1136-47. PubMed ID: 26191988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
    Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K
    J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and biochemical response to Cr(VI) in Stenotrophomonas sp.
    Morel MA; Ubalde MC; Olivera-Bravo S; Callejas C; Gill PR; Castro-Sowinski S
    FEMS Microbiol Lett; 2009 Feb; 291(2):162-8. PubMed ID: 19146572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges.
    Caravelli AH; Giannuzzi L; Zaritzky NE
    J Hazard Mater; 2008 Aug; 156(1-3):214-22. PubMed ID: 18215460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206.
    Xu CL; Wang YZ; Jin ML; Yang XQ
    Bioresour Technol; 2009 Mar; 100(6):2095-7. PubMed ID: 19056259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent.
    Srivastava S; Thakur IS
    Biodegradation; 2007 Oct; 18(5):637-46. PubMed ID: 17203372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root uptake and reduction of hexavalent chromium by aquatic macrophytes as assessed by high-resolution X-ray emission.
    Espinoza-Quiñones FR; Martin N; Stutz G; Tirao G; Palácio SM; Rizzutto MA; Módenes AN; Silva FG; Szymanski N; Kroumov AD
    Water Res; 2009 Sep; 43(17):4159-66. PubMed ID: 19595427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray absorption near edge structure and extended X-ray absorption fine structure analysis of standards and biological samples containing mixed oxidation states of chromium(III) and chromium(VI).
    Parsons JG; Dokken K; Peralta-Videa JR; Romero-Gonzalez J; Gardea-Torresdey JL
    Appl Spectrosc; 2007 Mar; 61(3):338-45. PubMed ID: 17389076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implication of chromium speciation on disposal of discarded CCA-treated wood.
    Song J; Dubey B; Jang YC; Townsend T; Solo-Gabriele H
    J Hazard Mater; 2006 Feb; 128(2-3):280-8. PubMed ID: 16165268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery.
    Sun S; Luo Y; Cao S; Li W; Zhang Z; Jiang L; Dong H; Yu L; Wu WM
    Bioresour Technol; 2013 Sep; 144():44-9. PubMed ID: 23856587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.