These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 15556218)
1. Contact-time-dependent atrazine residue formation in surface soils. Lesan HM; Bhandari A Water Res; 2004 Dec; 38(20):4435-45. PubMed ID: 15556218 [TBL] [Abstract][Full Text] [Related]
2. Sorption of acetochlor, atrazine, 2,4-D, chlorotoluron, MCPA, and trifluralin in six soils from Slovakia. Hiller E; Krascsenits Z; Cernanský S Bull Environ Contam Toxicol; 2008 May; 80(5):412-6. PubMed ID: 18401535 [TBL] [Abstract][Full Text] [Related]
3. Surfactant-enhanced desorption of atrazine and linuron residues as affected by aging of herbicides in soil. Rodriguez-Cruz MS; Sanchez-Martin MJ; Sanchez-Camazano M Arch Environ Contam Toxicol; 2006 Jan; 50(1):128-37. PubMed ID: 16237492 [TBL] [Abstract][Full Text] [Related]
4. Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis. Lesan HM; Bhandari A Water Res; 2003 Apr; 37(7):1644-54. PubMed ID: 12600393 [TBL] [Abstract][Full Text] [Related]
5. Influence of humic fractions on retention of isoproturon residues in two Moroccan soils. Elkhattabi K; Bouhaouss A; Scrano L; Lelario F; Bufo SA J Environ Sci Health B; 2007; 42(7):851-6. PubMed ID: 17763043 [TBL] [Abstract][Full Text] [Related]
6. Pesticide storage and release in unsaturated soil in Illinois, USA. Roy WR; Krapac IG; Chou SF; Simmons FW J Environ Sci Health B; 2001 May; 36(3):245-60. PubMed ID: 11411849 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the atrazine sorption process on Andisol and Ultisol volcanic ash-derived soils: kinetic parameters and the contribution of humic fractions. Báez ME; Fuentes E; Espinoza J J Agric Food Chem; 2013 Jul; 61(26):6150-60. PubMed ID: 23711282 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of extractable residue, bound residue and mineralization of a novel herbicide, ZJ0273, in aerobic soils. Wang H; Ye Q; Yue L; Yu Z; Han A; Yang Z; Lu L Chemosphere; 2009 Aug; 76(8):1036-40. PubMed ID: 19481777 [TBL] [Abstract][Full Text] [Related]
9. Impact of climatic and soil conditions on environmental fate of atrazine used under plantation forestry in Australia. Kookana R; Holz G; Barnes C; Bubb K; Fremlin R; Boardman B J Environ Manage; 2010 Dec; 91(12):2649-56. PubMed ID: 20727665 [TBL] [Abstract][Full Text] [Related]
10. Laboratory assessment of atrazine and fluometuron degradation in soils from a constructed wetland. Weaver MA; Zablotowicz RM; Locke MA Chemosphere; 2004 Nov; 57(8):853-62. PubMed ID: 15488576 [TBL] [Abstract][Full Text] [Related]
11. Accelerated degradation of (14)C-atrazine in brazilian soils from different regions. Martinazzo R; Jablonowski ND; Hamacher G; Dick DP; Burauel P J Agric Food Chem; 2010 Jul; 58(13):7864-70. PubMed ID: 20557132 [TBL] [Abstract][Full Text] [Related]
12. Assessment of herbicides and organochlorine pesticides contamination in agricultural soils using gas chromatography-mass spectrometry. Wang WH; Wang SC; Wang YH Commun Agric Appl Biol Sci; 2008; 73(4):841-51. PubMed ID: 19226834 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the atrazine's bound (nonextractable) residues using fractionation techniques for soil organic matter. Loiseau L; Barriuso E Environ Sci Technol; 2002 Feb; 36(4):683-9. PubMed ID: 11878383 [TBL] [Abstract][Full Text] [Related]
14. Distribution of atrazine in a crop-soil-groundwater system at Baiyangdian Lake area in China. Ye CM; Gong AJ; Wang XJ; Zheng HH; Lei ZF J Environ Sci (China); 2001 Apr; 13(2):148-52. PubMed ID: 11590732 [TBL] [Abstract][Full Text] [Related]
15. Atrazine degradation and residues distribution in two acid soils from temperate humid zone. Mahía J; Díaz-Raviña M J Environ Qual; 2007; 36(3):826-31. PubMed ID: 17485714 [TBL] [Abstract][Full Text] [Related]
16. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues. Scholtz MT; Bidleman TF Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778 [TBL] [Abstract][Full Text] [Related]
17. Sorbed atrazine shifts into non-desorbable sites of soil organic matter during aging. Park JH; Feng Y; Cho SY; Voice TC; Boyd SA Water Res; 2004 Nov; 38(18):3881-92. PubMed ID: 15380978 [TBL] [Abstract][Full Text] [Related]
18. Occurrence and downslope mobilization of quaternary herbicide residues in vineyard-devoted soils. Pateiro-Moure M; Arias-Estévez M; López-Periago E; Martínez-Carballo E; Simal-Gándara J Bull Environ Contam Toxicol; 2008 May; 80(5):407-11. PubMed ID: 18389162 [TBL] [Abstract][Full Text] [Related]
19. Spatial variability in 14C-herbicide degradation in surface and subsurface soils. Charnay MP; Tuis S; Coquet Y; Barriuso E Pest Manag Sci; 2005 Sep; 61(9):845-55. PubMed ID: 16003827 [TBL] [Abstract][Full Text] [Related]
20. Transfer of atrazine degradation capability to mineralize aged ¹⁴C-labeled atrazine residues in soils. Jablonowski ND; Krutz JL; Martinazzo R; Zajkoska P; Hamacher G; Borchard N; Burauel P J Agric Food Chem; 2013 Jul; 61(26):6161-6. PubMed ID: 23789631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]