BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15556281)

  • 1. Kinetic properties of native and mutagenized isoforms of mitochondrial alcohol dehydrogenase III purified from Kluyveromyces lactis.
    Brisdelli F; Saliola M; Pascarella S; Luzi C; Franceschini N; Falcone C; Martini F; Bozzi A
    Biochimie; 2004; 86(9-10):705-12. PubMed ID: 15556281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P; Colman RF
    Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and biochemical studies of alcohol dehydrogenase isozymes from Kluyveromyces lactis.
    Bozzi A; Saliola M; Falcone C; Bossa F; Martini F
    Biochim Biophys Acta; 1997 Apr; 1339(1):133-42. PubMed ID: 9165108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes.
    Fan F; Plapp BV
    Arch Biochem Biophys; 1999 Jul; 367(2):240-9. PubMed ID: 10395740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alanine scanning mutagenesis of the testosterone binding site of rat 3 alpha-hydroxysteroid dehydrogenase demonstrates contact residues influence the rate-determining step.
    Heredia VV; Cooper WC; Kruger RG; Jin Y; Penning TM
    Biochemistry; 2004 May; 43(19):5832-41. PubMed ID: 15134457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-induced conformational change at the catalytic site of Sulfolobus solfataricus alcohol dehydrogenase highlighted by Asn249Tyr substitution. A hydrogen/deuterium exchange, kinetic, and fluorescence quenching study.
    Secundo F; Russo C; Giordano A; Carrea G; Rossi M; Raia CA
    Biochemistry; 2005 Aug; 44(33):11040-8. PubMed ID: 16101287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Liu JH; Fang YW; Hung HC
    Biochem J; 2009 May; 420(2):201-9. PubMed ID: 19236308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LYS2 gene and its mutation in Kluyveromyces lactis.
    Alberti A; Ferrero I; Lodi T
    Yeast; 2003 Oct; 20(14):1171-5. PubMed ID: 14587101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine residues 162 and 340 are involved in the catalysis and coenzyme binding of NADP(+)-dependent malic enzyme from pigeon.
    Kuo CC; Tsai LC; Chin TY; Chang GG; Chou WY
    Biochem Biophys Res Commun; 2000 Apr; 270(3):821-5. PubMed ID: 10772909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of methionine-13 in the catalytic mechanism of 6-phosphogluconate dehydrogenase from sheep liver.
    Cervellati C; Dallocchio F; Bergamini CM; Cook PF
    Biochemistry; 2005 Feb; 44(7):2432-40. PubMed ID: 15709755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis.
    Zeng QK; Du HL; Wang JF; Wei DQ; Wang XN; Li YX; Lin Y
    Biotechnol Lett; 2009 Jul; 31(7):1025-9. PubMed ID: 19330484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the nucleotide coenzyme specificity and sulfhydryl redox sensitivity of two stress-responsive aldehyde dehydrogenase isoenzymes of Arabidopsis thaliana.
    Stiti N; Adewale IO; Petersen J; Bartels D; Kirch HH
    Biochem J; 2011 Mar; 434(3):459-71. PubMed ID: 21166653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationships in human glutathione-dependent formaldehyde dehydrogenase. Role of Glu-67 and Arg-368 in the catalytic mechanism.
    Sanghani PC; Davis WI; Zhai L; Robinson H
    Biochemistry; 2006 Apr; 45(15):4819-30. PubMed ID: 16605250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of a glutamate dehydrogenase into methionine/norleucine dehydrogenase by site-directed mutagenesis.
    Wang XG; Britton KL; Stillman TJ; Rice DW; Engel PC
    Eur J Biochem; 2001 Nov; 268(22):5791-9. PubMed ID: 11722565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450.
    Matsunaga I; Ueda A; Sumimoto T; Ichihara K; Ayata M; Ogura H
    Arch Biochem Biophys; 2001 Oct; 394(1):45-53. PubMed ID: 11566026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability.
    Hoelsch K; Sührer I; Heusel M; Weuster-Botz D
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2473-81. PubMed ID: 22588502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive amino acid residues involved in glutamate-binding of human glutamate dehydrogenase isozymes.
    Yoon HY; Cho EH; Yang SJ; Lee HJ; Huh JW; Choi MM; Cho SW
    Biochimie; 2004; 86(4-5):261-7. PubMed ID: 15194228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.