These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tiagabine inhibits haloperidol-induced oral dyskinesias in rats. Gao XM; Kakigi T; Friedman MB; Tamminga CA J Neural Transm Gen Sect; 1994; 95(1):63-9. PubMed ID: 7857587 [TBL] [Abstract][Full Text] [Related]
3. Neuroleptic-induced oral dyskinesias: effects of progabide and lack of correlation with regional changes in glutamic acid decarboxylase and choline acetyltransferase activities. Mithani S; Atmadja S; Baimbridge KG; Fibiger HC Psychopharmacology (Berl); 1987; 93(1):94-100. PubMed ID: 2888156 [TBL] [Abstract][Full Text] [Related]
4. Oral Dyskinesias and striatal lesions in rats after long-term co-treatment with haloperidol and 3-nitropropionic acid. Andreassen OA; Ferrante RJ; Beal MF; Jørgensen HA Neuroscience; 1998 Dec; 87(3):639-48. PubMed ID: 9758230 [TBL] [Abstract][Full Text] [Related]
5. [Oral dyskinesia in rats after a single administration of haloperidol combined with GABA-linoleamide. A model of dyskinesia in man]. Vamvakides A Agressologie; 1989 Feb; 30(2):89-91. PubMed ID: 2735495 [TBL] [Abstract][Full Text] [Related]
6. Effect of 5-HT1A and 5-HT2A/2C receptor modulation on neuroleptic-induced vacuous chewing movements. Naidu PS; Kulkarni SK Eur J Pharmacol; 2001 Sep; 428(1):81-6. PubMed ID: 11779040 [TBL] [Abstract][Full Text] [Related]
7. Modulatory effect of neurosteroids in haloperidol-induced vacuous chewing movements and related behaviors. Bishnoi M; Chopra K; Kulkarni SK Psychopharmacology (Berl); 2008 Feb; 196(2):243-54. PubMed ID: 17955214 [TBL] [Abstract][Full Text] [Related]
8. Parallels between behavioral and neurochemical variability in the rat vacuous chewing movement model of tardive dyskinesia. Bachus SE; Yang E; McCloskey SS; Minton JN Behav Brain Res; 2012 Jun; 231(2):323-36. PubMed ID: 22503783 [TBL] [Abstract][Full Text] [Related]
9. Mixture in the distribution of haloperidol-induced oral dyskinesias in the rat supports an animal model of tardive dyskinesia. Hashimoto T; Ross DE; Gao XM; Medoff DR; Tamminga CA Psychopharmacology (Berl); 1998 May; 137(2):107-12. PubMed ID: 9629996 [TBL] [Abstract][Full Text] [Related]
10. Suppression of haloperidol-induced oral dyskinesias in rats by vigabatrin. Seiler N; Grauffel C; Elands J; van den Buuse M; Knödgen B; Sarhan S; Moran P; Gobaille S Pharmacol Biochem Behav; 1995 Feb; 50(2):181-9. PubMed ID: 7740056 [TBL] [Abstract][Full Text] [Related]
11. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia. Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862 [TBL] [Abstract][Full Text] [Related]
12. Extract of Ginkgo biloba is equivalent to vitamin E in attenuating and preventing vacuous chewing movements in a rat model of tardive dyskinesia. An HM; Tan YL; Shi J; Wang ZR; Li J; Wang YC; Kosten TR; Zhou DF; Yang FD; Zhang XY Behav Pharmacol; 2013 Oct; 24(7):610-6. PubMed ID: 23994817 [TBL] [Abstract][Full Text] [Related]
13. Clinical activity of GABA agonists in neuroleptic- and L-dopa-induced dyskinesia. Morselli PL; Fournier V; Bossi L; Musch B Psychopharmacology Suppl; 1985; 2():128-36. PubMed ID: 2860656 [TBL] [Abstract][Full Text] [Related]
14. Chronic haloperidol-induced alterations in pallidal GABA and striatal D(1)-mediated dopamine turnover as measured by dual probe microdialysis in rats. Grimm JW; See RE Neuroscience; 2000; 100(3):507-14. PubMed ID: 11098113 [TBL] [Abstract][Full Text] [Related]
15. Oral administration of haloperidol at clinically recommended doses elicits smaller parkinsonian effects but more tardive dyskinesia in rats. Shireen E; Naeem S; Inam QU; Haleem DJ Pak J Pharm Sci; 2013 Mar; 26(2):271-6. PubMed ID: 23455196 [TBL] [Abstract][Full Text] [Related]
16. A novel brain-targeted antioxidant (AD4) attenuates haloperidol-induced abnormal movement in rats: implications for tardive dyskinesia. Sadan O; Bahat-Stromza M; Gilgun-Sherki Y; Atlas D; Melamed E; Offen D Clin Neuropharmacol; 2005; 28(6):285-8. PubMed ID: 16340385 [TBL] [Abstract][Full Text] [Related]
17. Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes. Bishnoi M; Chopra K; Kulkarni SK Eur J Pharmacol; 2006 Dec; 552(1-3):55-66. PubMed ID: 17064683 [TBL] [Abstract][Full Text] [Related]
18. Chronic olanzapine or sertindole treatment results in reduced oral chewing movements in rats compared to haloperidol. Gao XM; Sakai K; Tamminga CA Neuropsychopharmacology; 1998 Nov; 19(5):428-33. PubMed ID: 9778664 [TBL] [Abstract][Full Text] [Related]
19. Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Andreassen OA; Ferrante RJ; Aamo TO; Beal MF; Jørgensen HA Neuroscience; 2003; 122(3):717-25. PubMed ID: 14622915 [TBL] [Abstract][Full Text] [Related]
20. SL76002 - effect on gamma-aminobutyric acid and dopamine in animals treated chronically with haloperidol. Rastogi SK; Rastogi RB; Singhal RL; Lapierre YD Neuropsychobiology; 1983; 9(4):211-4. PubMed ID: 6646392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]