These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 1555638)
21. The rat model of tardive dyskinesia: relationship between vacuous chewing movements and gross motor activity during acute and long-term haloperidol treatment. Andreassen OA; Jørgensen HA Life Sci; 1995; 57(24):2263-72. PubMed ID: 7475980 [TBL] [Abstract][Full Text] [Related]
22. Induction and reversal of dopamine dyskinesia in rat, cat, and monkey. Lloyd KG; Willigens MT; Goldstein M Psychopharmacology Suppl; 1985; 2():200-10. PubMed ID: 2987905 [TBL] [Abstract][Full Text] [Related]
24. Ameliorative effect of yokukansan on vacuous chewing movement in haloperidol-induced rat tardive dyskinesia model and involvement of glutamatergic system. Sekiguchi K; Kanno H; Yamaguchi T; Ikarashi Y; Kase Y Brain Res Bull; 2012 Dec; 89(5-6):151-8. PubMed ID: 22982367 [TBL] [Abstract][Full Text] [Related]
25. The effect of chronic administration of sarizotan, 5-HT1A agonist/D3/D4 ligand, on haloperidol-induced repetitive jaw movements in rat model of tardive dyskinesia. Rosengarten H; Bartoszyk GD; Quartermain D; Lin Y Prog Neuropsychopharmacol Biol Psychiatry; 2006 Mar; 30(2):273-9. PubMed ID: 16229932 [TBL] [Abstract][Full Text] [Related]
26. Protective effect of hesperetin against haloperidol-induced orofacial dyskinesia and catalepsy in rats. Dhingra D; Goswami S; Gahalain N Nutr Neurosci; 2018 Nov; 21(9):667-675. PubMed ID: 28641484 [TBL] [Abstract][Full Text] [Related]
27. Chronic haloperidol, but not clozapine, produces altered oral movements and increased extracellular glutamate in rats. See RE; Chapman MA Eur J Pharmacol; 1994 Oct; 263(3):269-76. PubMed ID: 7843264 [TBL] [Abstract][Full Text] [Related]
28. Possible antioxidant and neuroprotective mechanisms of FK506 in attenuating haloperidol-induced orofacial dyskinesia. Singh A; Naidu PS; Kulkarni SK Eur J Pharmacol; 2003 Sep; 477(2):87-94. PubMed ID: 14519411 [TBL] [Abstract][Full Text] [Related]
29. Neuroleptic-induced vacuous chewing movements as an animal model of tardive dyskinesia: a study in three rat strains. Tamminga CA; Dale JM; Goodman L; Kaneda H; Kaneda N Psychopharmacology (Berl); 1990; 102(4):474-8. PubMed ID: 1982902 [TBL] [Abstract][Full Text] [Related]
30. Pro-Leu-glycinamide and its peptidomimetic, PAOPA, attenuate haloperidol induced vacuous chewing movements in rat: A model of human tardive dyskinesia. Sharma S; Paladino P; Gabriele J; Saeedi H; Henry P; Chang M; Mishra RK; Johnson RL Peptides; 2003 Feb; 24(2):313-9. PubMed ID: 12668218 [TBL] [Abstract][Full Text] [Related]
32. Haloperidol-Induced Preclinical Tardive Dyskinesia Model in Rats. Guzen FP; Cavalcanti JRLP; Cavalcanti DMLP; de Sales LGP; da Silva MSM; da Silva ANA; Pinheiro FI; de Araújo DP Curr Protoc Neurosci; 2019 Jun; 88(1):e68. PubMed ID: 31216395 [TBL] [Abstract][Full Text] [Related]
33. Investigation of the effects of cannabidiol on vacuous chewing movements, locomotion, oxidative stress and blood glucose in rats treated with oral haloperidol. Kajero JA; Seedat S; Ohaeri J; Akindele A; Aina O World J Biol Psychiatry; 2020 Oct; 21(8):612-626. PubMed ID: 32264772 [No Abstract] [Full Text] [Related]
34. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Bishnoi M; Chopra K; Kulkarni SK Pharmacol Biochem Behav; 2008 Feb; 88(4):511-22. PubMed ID: 18022680 [TBL] [Abstract][Full Text] [Related]
35. Possible involvement of prostaglandins in haloperidol-induced orofacial dyskinesia in rats. Naidu PS; Kulkarni SK Eur J Pharmacol; 2001 Nov; 430(2-3):295-8. PubMed ID: 11711046 [TBL] [Abstract][Full Text] [Related]
36. [Vacuous chewing after haloperidol and GABA-linoleamide administration in the rat]. Vamvakidès A Agressologie; 1986 Nov; 27(10):819-21. PubMed ID: 3812899 [No Abstract] [Full Text] [Related]
37. Gabapentin reduces haloperidol-induced vacuous chewing movements in mice. Ceretta APC; de Freitas CM; Schaffer LF; Reinheimer JB; Dotto MM; de Moraes Reis E; Scussel R; Machado-de-Ávila RA; Fachinetto R Pharmacol Biochem Behav; 2018 Mar; 166():21-26. PubMed ID: 29374574 [TBL] [Abstract][Full Text] [Related]
38. Possible anti-oxidant and neuroprotective mechanisms of zolpidem in attenuating typical anti-psychotic-induced orofacial dyskinesia: a biochemical and neurochemical study. Bishnoi M; Chopra K; Kulkarni SK Prog Neuropsychopharmacol Biol Psychiatry; 2007 Jun; 31(5):1130-8. PubMed ID: 17513028 [TBL] [Abstract][Full Text] [Related]
39. Glycine and D-cycloserine attenuate vacuous chewing movements in a rat model of tardive dyskinesia. Shoham S; Mazeh H; Javitt DC; Heresco-Levy U Brain Res; 2004 Apr; 1004(1-2):142-7. PubMed ID: 15033429 [TBL] [Abstract][Full Text] [Related]
40. Effects of chronic haloperidol and clozapine on vacuous chewing and dopamine-mediated jaw movements in rats: evaluation of a revised animal model of tardive dyskinesia. Ikeda H; Adachi K; Hasegawa M; Sato M; Hirose N; Koshikawa N; Cools AR J Neural Transm (Vienna); 1999; 106(11-12):1205-16. PubMed ID: 10651114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]