BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 15556555)

  • 1. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors.
    Paitan Y; Biran I; Shechter N; Biran D; Rishpon J; Ron EZ
    Anal Biochem; 2004 Dec; 335(2):175-83. PubMed ID: 15556555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment.
    de Las Heras A; de Lorenzo V
    Methods Mol Biol; 2012; 834():261-81. PubMed ID: 22144365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds.
    Kim MN; Park HH; Lim WK; Shin HJ
    J Microbiol Methods; 2005 Feb; 60(2):235-45. PubMed ID: 15590098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium.
    Biran I; Babai R; Levcov K; Rishpon J; Ron EZ
    Environ Microbiol; 2000 Jun; 2(3):285-90. PubMed ID: 11200429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor.
    Phoenix P; Keane A; Patel A; Bergeron H; Ghoshal S; Lau PC
    Environ Microbiol; 2003 Dec; 5(12):1309-27. PubMed ID: 14641576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of an E. coli bioreporter for monitoring trace amounts of phenol by deletion of the inducible sigma54-dependent promoter.
    Peng Z; Yan Y; Xu Y; Takeo M; Yu H; Zhao Z; Zhan Y; Zhang W; Lin M; Chen M
    Biotechnol Lett; 2010 Sep; 32(9):1265-70. PubMed ID: 20533077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical evaluation of cellular physiological status under stress in Escherichia coli with the rpoS-lacZ reporter gene.
    Funabashi H; Ishikawa M; Mie M; Takahashi F; Yanagida Y; Aizawa M; Kobatake E
    Biotechnol Bioeng; 2005 May; 90(4):509-15. PubMed ID: 15782408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and characterization of an aequorin-based bacterial biosensor for detection of toluene and related compounds.
    Zeinoddini M; Khajeh K; Behzadian F; Hosseinkhani S; Saeedinia AR; Barjesteh H
    Photochem Photobiol; 2010; 86(5):1071-5. PubMed ID: 20663082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling bacterial physiology for optimal expression of gene reporter constructs.
    Marqués S; Aranda-Olmedo I; Ramos JL
    Curr Opin Biotechnol; 2006 Feb; 17(1):50-6. PubMed ID: 16359853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial oxygenases: in vivo enzyme biosensors for organic pollutants.
    Tizzard AC; Lloyd-Jones G
    Biosens Bioelectron; 2007 May; 22(11):2400-7. PubMed ID: 17023153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of transformant reporters carrying fused genes using pcbC promoter of Pseudomonas sp DJ-12 for detection of aromatic pollutants.
    Park SH; Lee K; Chae JC; Kim CK
    Environ Monit Assess; 2004 Mar; 92(1-3):241-51. PubMed ID: 15038547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosensing environmental pollution.
    Ron EZ
    Curr Opin Biotechnol; 2007 Jun; 18(3):252-6. PubMed ID: 17532203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmid-based reporter genes: assays for beta-galactosidase and alkaline phosphatase activities.
    Liu M
    Methods Mol Biol; 2003; 235():289-96. PubMed ID: 12904670
    [No Abstract]   [Full Text] [Related]  

  • 14. Electrochemical cell-based sensors.
    Ron EZ; Rishpon J
    Adv Biochem Eng Biotechnol; 2010; 117():77-84. PubMed ID: 20087725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical biosensor technology: application to pesticide detection.
    Palchetti I; Laschi S; Mascini M
    Methods Mol Biol; 2009; 504():115-26. PubMed ID: 19159094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, construction, and characterization of a set of biosensors for aromatic compounds.
    Xue H; Shi H; Yu Z; He S; Liu S; Hou Y; Pan X; Wang H; Zheng P; Cui C; Viets H; Liang J; Zhang Y; Chen S; Zhang HM; Ouyang Q
    ACS Synth Biol; 2014 Dec; 3(12):1011-4. PubMed ID: 25524112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making bio-sense of toxicity: new developments in whole-cell biosensors.
    Sørensen SJ; Burmølle M; Hansen LH
    Curr Opin Biotechnol; 2006 Feb; 17(1):11-6. PubMed ID: 16376540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds.
    Li YF; Li FY; Ho CL; Liao VH
    Environ Pollut; 2008 Mar; 152(1):123-9. PubMed ID: 17583401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives].
    Plotnikova EG; Shumkova ES; Shumkov MS
    Prikl Biokhim Mikrobiol; 2016; 52(4):353-64. PubMed ID: 29512966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early and late responses of TOL promoters to pathway inducers: identification of postexponential promoters in Pseudomonas putida with lacZ-tet bicistronic reporters.
    de Lorenzo V; Cases I; Herrero M; Timmis KN
    J Bacteriol; 1993 Nov; 175(21):6902-7. PubMed ID: 8226632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.