BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15556755)

  • 21. Molecular dynamics simulations of the HIV-1 integrase dimerization interface: guidelines for the design of a novel class of integrase inhibitors.
    Sippel M; Sotriffer CA
    J Chem Inf Model; 2010 Apr; 50(4):604-14. PubMed ID: 20230013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery and structure-activity relationship studies of a unique class of HIV-1 integrase inhibitors.
    Dayam R; Sanchez T; Neamati N
    ChemMedChem; 2006 Feb; 1(2):238-44. PubMed ID: 16892356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calculation of binding energy using BLYP/MM for the HIV-1 integrase complexed with the S-1360 and two analogues.
    Alves CN; Martí S; Castillo R; Andrés J; Moliner V; Tuñón I; Silla E
    Bioorg Med Chem; 2007 Jun; 15(11):3818-24. PubMed ID: 17420131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design, synthesis, and anti-integrase activity of catechol-DKA hybrids.
    Maurin C; Bailly F; Mbemba G; Mouscadet JF; Cotelle P
    Bioorg Med Chem; 2006 May; 14(9):2978-84. PubMed ID: 16412645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Computer search for novel HIV-1 integrase inhibitors].
    Akimov DV; Filimonov DA; Prikazchikova TA; Gottikh MB; Poroĭkov VV
    Biomed Khim; 2005; 51(3):335-40. PubMed ID: 16104397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/C280S).
    Marchand C; Johnson AA; Karki RG; Pais GC; Zhang X; Cowansage K; Patel TA; Nicklaus MC; Burke TR; Pommier Y
    Mol Pharmacol; 2003 Sep; 64(3):600-9. PubMed ID: 12920196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance.
    Barreca ML; Lee KW; Chimirri A; Briggs JM
    Biophys J; 2003 Mar; 84(3):1450-63. PubMed ID: 12609852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New approaches for inhibiting HIV integrase: a journey beyond the active site.
    Walker MA
    Curr Opin Investig Drugs; 2009 Feb; 10(2):129-36. PubMed ID: 19197790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors.
    Barreca ML; Ferro S; Rao A; De Luca L; Zappalà M; Monforte AM; Debyser Z; Witvrouw M; Chimirri A
    J Med Chem; 2005 Nov; 48(22):7084-8. PubMed ID: 16250669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel HIV integrase inhibitors with anti-HIV activity: insights into integrase inhibition from docking studies.
    Cox AG; Nair V
    Antivir Chem Chemother; 2006; 17(6):343-53. PubMed ID: 17249248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of a novel binding trench in HIV integrase.
    Schames JR; Henchman RH; Siegel JS; Sotriffer CA; Ni H; McCammon JA
    J Med Chem; 2004 Apr; 47(8):1879-81. PubMed ID: 15055986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benzyl amide-ketoacid inhibitors of HIV-integrase.
    Walker MA; Johnson T; Naidu BN; Banville J; Remillard R; Plamondon S; Martel A; Li C; Torri A; Samanta H; Lin Z; Dicker I; Krystal M; Meanwell NA
    Bioorg Med Chem Lett; 2007 Sep; 17(17):4886-90. PubMed ID: 17604626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and optimization of tricyclic phtalimide analogues as novel inhibitors of HIV-1 integrase.
    Verschueren WG; Dierynck I; Amssoms KI; Hu L; Boonants PM; Pille GM; Daeyaert FF; Hertogs K; Surleraux DL; Wigerinck PB
    J Med Chem; 2005 Mar; 48(6):1930-40. PubMed ID: 15771437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Symmetrical 1-pyrrolidineacetamide showing anti-HIV activity through a new binding site on HIV-1 integrase.
    Du L; Zhao YX; Yang LM; Zheng YT; Tang Y; Shen X; Jiang HL
    Acta Pharmacol Sin; 2008 Oct; 29(10):1261-7. PubMed ID: 18817633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: binding modes and drug resistance to a diketo acid inhibitor.
    Brigo A; Lee KW; Fogolari F; Mustata GI; Briggs JM
    Proteins; 2005 Jun; 59(4):723-41. PubMed ID: 15815973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG
    Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight into the inhibitory mechanism and binding mode between D77 and HIV-1 integrase by molecular modeling methods.
    Li P; Tan JJ; Liu M; Zhang XY; Chen WZ; Wang CX
    J Biomol Struct Dyn; 2011 Oct; 29(2):311-23. PubMed ID: 21875151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From ligand to complexes. Part 2. Remarks on human immunodeficiency virus type 1 integrase inhibition by beta-diketo acid metal complexes.
    Bacchi A; Biemmi M; Carcelli M; Carta F; Compari C; Fisicaro E; Rogolino D; Sechi M; Sippel M; Sotriffer CA; Sanchez TW; Neamati N
    J Med Chem; 2008 Nov; 51(22):7253-64. PubMed ID: 18983138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of Mg2+ on the binding modes of HIV-1 integrase with thiazolothiazepine inhibitor studied by molecular simulation.
    Wang L
    Comput Biol Med; 2009 Apr; 39(4):355-60. PubMed ID: 19268284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-based design of a novel peptide inhibitor of HIV-1 integrase: a computer modeling approach.
    Rao GS; Bhatnagar S; Ahuja V
    J Biomol Struct Dyn; 2002 Aug; 20(1):31-8. PubMed ID: 12144350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.