These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 15556841)

  • 1. Orthostatic modification of ventilatory dynamic response to carbon dioxide perturbations.
    Wang X; Richardson L; Krishnamurthy S; Pennington K; Evans J; Bruce E; Abraham W; Bhakta D; Patwardhan A
    Auton Neurosci; 2004 Nov; 116(1-2):76-83. PubMed ID: 15556841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inspiratory CO2 increases orthostatic tolerance during repeated tilt.
    Blaber AP; Bondar RL; Moradshahi P; Serrador JM; Hughson RL
    Aviat Space Environ Med; 2001 Nov; 72(11):985-91. PubMed ID: 11718518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of ventilatory sensitivity to carbon dioxide changes during orthostasis.
    Richardson L; Topor Z; Bhakta D; McCaffrey F; Bruce E; Patwardhan A
    Biomed Sci Instrum; 2002; 38():301-5. PubMed ID: 12085621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of respiratory instability during neurocardiogenic presyncope on cerebrovascular and cardiovascular dynamics.
    Porta C; Casucci G; Castoldi S; Rinaldi A; Bernardi L
    Heart; 2008 Nov; 94(11):1433-9. PubMed ID: 17947365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans.
    Jordan J; Shannon JR; Diedrich A; Black B; Costa F; Robertson D; Biaggioni I
    Hypertension; 2000 Sep; 36(3):383-8. PubMed ID: 10988269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient influence of end-tidal carbon dioxide tension on the postural restraint in cerebral perfusion.
    Immink RV; Truijen J; Secher NH; Van Lieshout JJ
    J Appl Physiol (1985); 2009 Sep; 107(3):816-23. PubMed ID: 19574504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of hypocapnia and the cerebral autoregulatory response on cerebrovascular resistance and apparent zero flow pressure during isoflurane anesthesia.
    McCulloch TJ; Turner MJ
    Anesth Analg; 2009 Apr; 108(4):1284-90. PubMed ID: 19299801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer function analysis of gender-related differences in cerebral autoregulation.
    Wang X; Krishnamurthy S; Evans J; Bhakta D; Justice L; Bruce E; Patwardhan A
    Biomed Sci Instrum; 2005; 41():48-53. PubMed ID: 15850081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head rotation during upright tilt increases cardiovagal baroreflex sensitivity.
    Cooke WH
    Aviat Space Environ Med; 2007 May; 78(5):463-9. PubMed ID: 17539439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.
    Klein KU; Glaser M; Reisch R; Tresch A; Werner C; Engelhard K
    Anesth Analg; 2009 Jul; 109(1):199-204. PubMed ID: 19535711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2.
    Ainslie PN; Celi L; McGrattan K; Peebles K; Ogoh S
    Brain Res; 2008 Sep; 1230():115-24. PubMed ID: 18680730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotid-cardiac baroreflex function does not influence blood pressure regulation during head-up tilt in humans.
    Ogoh S; Yoshiga CC; Secher NH; Raven PB
    J Physiol Sci; 2006 Jun; 56(3):227-33. PubMed ID: 16839459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of controlled breathing patterns on cerebrovascular autoregulation and cardiac baroreceptor sensitivity.
    Eames PJ; Potter JF; Panerai RB
    Clin Sci (Lond); 2004 Feb; 106(2):155-62. PubMed ID: 14521507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral blood flow during supine rest and the first minute of head-up tilt in patients with orthostatic intolerance.
    Jáuregui-Renaud K; Hermosillo JA; Jardón JL; Márquez MF; Kostine A; Silva MA; Cárdenas M
    Europace; 2005 Sep; 7(5):460-4. PubMed ID: 16087110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in partial pressure of arterial carbon dioxide induces redistribution of oral tissue blood flow in the rabbit.
    Handa M; Ichinohe T; Kaneko Y
    J Oral Maxillofac Surg; 2008 Sep; 66(9):1820-5. PubMed ID: 18718388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel methodology to comprehensively assess retinal arteriolar vascular reactivity to hypercapnia.
    Venkataraman ST; Hudson C; Fisher JA; Flanagan JG
    Microvasc Res; 2006 Nov; 72(3):101-7. PubMed ID: 16926032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of propofol on cerebrovascular carbon dioxide reactivity in elderly versus young subjects.
    Hinohara H; Kadoi Y; Takahashi K; Saito S; Goto F
    J Clin Anesth; 2005 Mar; 17(2):85-90. PubMed ID: 15809122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking time-varying cerebral autoregulation in response to changes in respiratory PaCO2.
    Liu J; Simpson MD; Yan J; Allen R
    Physiol Meas; 2010 Oct; 31(10):1291-307. PubMed ID: 20720290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral haemodynamic response to acute intracranial hypertension induced by head-down tilt.
    Bosone D; Ozturk V; Roatta S; Cavallini A; Tosi P; Micieli G
    Funct Neurol; 2004; 19(1):31-5. PubMed ID: 15212114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of end-tidal partial pressure of carbon dioxide to predict arterial partial pressure of carbon dioxide in harp seals during isoflurane-induced anesthesia.
    Pang DS; Rondenay Y; Troncy E; Measures LN; Lair S
    Am J Vet Res; 2006 Jul; 67(7):1131-5. PubMed ID: 16817732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.